

Nanjing, China, March 2006

Pediatric Advanced Life Support Simone Rugolotto, MD

Department of Pediatrics, University of Verona, Italy Alpine Pediatric Life Support Training Center http://www.provinz.bz.it/se/paednotmed/

Italian PALS statistics

- 15 courses in Trento province (1998-2000)
- 74 provider courses (2000-2006)
- 1357 providers
- 91 instructors
- 5 instructors of instructors
- 8 instructor courses
- 130 Italian PBLS Training Centers

Aims and Objectives

- Aetiology of cardiac arrest in children
- Reducing mortality and morbidity
- Recognising respiratory and circulatory failure
- Initial management plan

Aetiology of Cardiac Arrest in Children (1)

Primary Cardiac Arrest

- Common in adults, less common in children
- Sudden, unpredictable onset
- Due to arrhythmia (VF or pulseless VT)
- Hypoxia and acidosis not initially present
- Outcome depends on early defibrillation

Aetiology of Cardiac Arrest in Children (2)

Secondary Cardiac Arrest

- Most common form in children
- Heart stops due to ischaemia or hypoxia secondary to another condition
- Arrest rhythm is usually bradycardia, progressing to asystole
- Hypoxia initially present
- Outcome depends on prevention or prompt resuscitation

Pathways to Cardiac Arrest in Children

Pathways to Cardiac Arrest in Children

Successful resuscitation in children depends upon early recognition of respiratory and circulatory failure and measures to prevent progression to cardiac arrest

What is wrong with these children?

Respiratory Failure: Definitions

Respiratory failure

 The loss of ability of the respiratory system to maintain adequate blood levels of CO₂ and O₂

Respiratory distress

 Clinical state with increased work of breathing

Respiratory failure can exist without respiratory distress

Pathophysiology of Respiratory Failure (1)

Due to mismatch of ventilation and perfusion in lung units

Pathophysiology of Respiratory Failure (2)

Due to inadequate movement of gas in and out of the lungs

Minute ventilation = Tidal volume x resp rate

1400ml/min	140ml	10/min
1400ml/min	70ml	20/min
1400ml/min	35ml	40/min

Respiratory failure can occur with respiration which is either too slow or too fast

Assessment of Respiratory Insufficiency

A B C

Assess, change, reassess

Assessment of Respiratory Insufficiency: Airway

- Chest movement does not imply a clear airway
- Listen and feel for air movement and noises
- Is the airway:
- Clear and safe?
- At risk?
- Obstructed?

- Respiratory rate
- Tidal volume
- Work of breathing (WOB)
- Oxygenation

Respiratory rate:

Varies with age, fever, pain and anxiety as well as respiratory insufficiency

Age	<1	2-5	5-12	>12
Resp rate	30-40	20-30	20-24	12-20

It is more important to monitor the trend in respiratory rate than to rely on the absolute value

Tidal volume; look, listen, feel

- Compare one side with the other
- Subjective assessment; breath sounds should be audible in both bases
- Feel for the trachea; is it central?
- Noises!

Noises

- Stridor: Inspiratory noise; airway obstruction above the thoracic inlet
- Wheeze: Expiratory noise; airway obstruction below the thoracic inlet
- Grunting: Expiratory noise; attempt to raise the end-expiratory lung volume

Signs of Respiratory Distress (increased WOB)

- Tachypnoea
- Head bobbing
- Anxious demeanour
- Flared nostrils
- Grunting
- Stridor or wheeze
- Exhaustion

Assessment of Respiratory Insufficiency: Oxygenation

Cyanosis is an unreliable sign of hypoxia

- Absence of cyanosis does not imply good oxygenation
- Central cyanosis does imply hypoxia
- Use a pulse oximeter
- What FiO₂ is required to maintain good saturations?

Compensated or Decompensated?

Signs of decompensation

- Increasing respiratory rate
- Respiratory rate <10 or >55
- Sudden fall in respiratory rate
- Reduced interaction with carers
- Exhaustion
- Decreasing level of consciousness

What is wrong with this child?

Assessment of Circulatory Failure

A B C

Assess, change, reassess

Assessment of Circulatory Failure

Relationships between variables affecting cardiac output and blood pressure

Can be objectively measured

Can be subjectively assessed

Assessment of Circulatory Failure

- Heart rate
- Blood pressure
- Systemic vascular resistance
- Pre-load

Assessment of Circulatory Failure: Heart Rate

Heart rate:

Varies with age, fever and anxiety as well as circulatory failure

Normal heart (HR) and respiratory (RR) rates by age

Age	>30 days	5 years	12 years	18 years
RR	30	20	18	14
		X5	X5	X5
HR	130	100	90 🔶	70 🗸

Assessment of Circulatory Failure: Blood Pressure

Changes in systolic blood pressure with age

	Systolic BP	Systolic BP	
Age	(normal) mmHg	(lower limit) mmHg	
0 1		50	
0 –1 month	60	50	
1 – 12 months	80	70	
1 – 10 years	90 + 2x age	70 + 2x age	
> 10 years	120	90	

Assessment of Circulatory Failure: Blood Pressure

Blood pressure is maintained by increases in SVR at the expense of perfusion of:

- Skin
- Kidneys/gut

When compensatory mechanisms fail, BP falls. Prior to cardiac arrest so dose perfusion of:

• Brain & heart

Assessment of Circulatory Failure: Skin Perfusion

Capillary refill

- Gently squeeze a finger (or toe) pulp until it blanches
- Release and observe the return of capillary blood
- > 2 seconds is abnormal

Assessment of Circulatory Failure: Skin Perfusion

- Look for colour (mottling, pallor, peripheral cyanosis or rashes)
- Feel for peripheral pulses, temperature and the line of demarcation between warm and cold

Assessment of Circulatory Failure: Renal Perfusion

Urine output is an index of organ perfusion

- Nappy weights
- Urinary catheter?

Assessment of Circulatory Failure: Pre-load

- Jugular venous pulsation
- Enlargement of liver
- Moist sounds in lungs
- CXR

Compensated or Decompensated?

Signs of decompensation

- Increasing pulse rate
- Sudden fall in pulse rate
- Hypotension
- Oliguria
- Reduced interaction with carers
- Decreasing level of consciousness

Types of Circulatory Failure

	HR	BP	SVR	Pre-load
Hypovolaemic	1		1	Ļ
Distributive	1	Ļ	Ļ	Ļ
Cardiogenic	1	Ļ	↑ →	_ ↑ →

Cardiorespiratory Failure

- There is always some respiratory compensation for circulatory failure and vice versa
- In severe illness it is not possible to determine which came first
- If untreated, this phase presages imminent cardiorespiratory arrest

Management, based on initial assessment

- Stable and safe
- Compensated respiratory failure
- Decompensated respiratory failure
- Compensated circulatory failure
- Decompensated circulatory failure
- Cardio-respiratory failure

Compensated Respiratory Failure

- Assess airway
- O₂ therapy (unthreatening)
- Monitoring (pulse oximetry, pulse and respiratory rate)
- IV access with topical anaesthesia
- Reassess

Decompensated Respiratory Failure

- Maintain clear airway
- 100% O₂
- Support ventilation with bag/mask system
- Consider tracheal intubation and mechanical ventilation

Compensated Circulatory Failure

- Assess airway
- O₂ therapy (unthreatening)
- Monitoring (pulse oximetry, pulse and respiratory rate, blood pressure)
- IV access
- Fluid bolus
- Reassess

Decompensated Circulatory Failure

- Airway control
- 100% O₂
- Support ventilation if required
- Urgent IV/IO access, fluid bolus
- Reassess and repeat as required
- Consider inotropes

Cardiorespiratory Failure

- Airway control
- 100% O₂
- Support ventilation, initially with bag/mask system
- Reassess (monitoring)
- Urgent IV/IO access; fluid boluses if required
- Reassess
- Consider inotropes

PALS procedures: what is new in 2005 Guidelines

- Airway LMA, cuffed tube
- Breathing Hyperventilation, ET CO2
- Circulation
 - **Tracheal access**
 - Adrenaline, glucose, lidocaine, vasopressin
- Defibrillation
 - Doses, biphasic, algorithm

Airway: LMA

- Not a first choice in resuscitation
- Acceptable for experienced providers in children

Airway: tracheal tube

 Tape measurement is more accurate than formulae diameter ETT = age (yr) + 4

4_

Depth (cm) = diameter ETT (mm) x 3

- Prehospital uncuffed TT (up to 5.5)
- In-hospital: cuffed TT acceptable Leak, ARDS, non-compliant lungs
- Monitoring of cuff pressure (20 cm H2O)

Breathing: ventilation during and after CPR

- Hyperventilation :
 ↗ intrathoracic pressure
 ☆ cerebral & coronary perfusion
- Ideal tidal volume = modest chest wall rise

Avoid hyperventilation Maintain normal PaCO2 : 35-45 mm Hg

Breathing : monitoring of EtCO₂

✓ In pre- & in-hospital setting ✓ In any intubated child > 2 kg ✓ In any transportation 45 \checkmark Low or absent EtCO₂ **Oesophageal intubation** Absence or low pulmonary BF (shock states or CA)

Circulation : vascular access

IV & IO always better than ET Give adrenaline only once by ET access

Circulation : adrenaline

✓ Infant and child

- IV-IO : 0.01 mg/kg for every dose
- ET : 0.1 mg/kg

✓Newborn

- · IV-IO : 0.01-0.03 mg/kg
- ET : try to avoid if required 0.1 mg/kg

Circulation : medications

- No glucose containing solutions during CPR
- ✓ Avoid hyper-, hypoglycaemia after ROSC
- Lidocaine not first line treatment for VF/pulseless VT
- ✓ Vasopressin : insufficient data
 - Rescue therapy ? International protocol?

Circulation: defibrillation

✓ Optimal paddle force 3 kg for child < 10 kg</p> 5 kg for child > 10 kg ✓ Biphasic waves (versus) monophasic) As effective Less myocardial dysfunction

Circulation: defibrillation doses

- ✓ No stacked doses
- ✓ Dose : 4 J/kg for every single shock
 - Monophasic or biphasic
- ✓ No escalation
- ✓ Animal model
 - better results with 3-4 J/kg than with lower or adult doses
 - No myocardial damage with dose ≥ 9 J/kg

Circulation: defibrillation

- Place gel/ pads on chest
- Select energy : 4 J/kg
- Stop chest compressions and remove high flow oxygen
- Charge the defibrillator with paddles on chest
- "STAND CLEAR"
- Check that nobody is in contact with the patient / bed
- Check monitor for VF/VT and deliver shock
- Replace paddles on the defibrillator
- Return to CPR immediately

* Reversible Causes

Hypoxia Hypovolaemia Hypo/hyperkalaemia/Metabolic Hypothermia Tension Pneumothorax Tamponade, cardiac Toxins Thrombosis (coronary or pulmonary) Circulation: minimise CPR interruption

Palpate briefly a pulse only if :
modification of the arrest rhythm
non-shockable / organised rhythm
In VF/VT only after 2 min CPR (except if signs of life)
In doubt resume CPR

Temperature management

For child comatose after ROSC :

- Aggressively control hyperthermia
- ✓ Do not rewarm if hypothermic (if >32°C)
- ✓ Cooling down to 32-34°C for 12-24 hours
- Avoid shivering (analgesia, NM blockade)
- After 12-24 hours, rewarm by 0.25-0.5°C per hour
- Check for infection, CV instability, coagulopathy, hyperglycaemia, electrolytes abnormalities

P-Trauma Life Support

 Primary survey and initial CPR (A, B, C, D, E)
 Secondary Survey and stabilization
 Pediatric Trauma Index
 Destination and transport
 Definitve Treatment

Classes

- Head Trauma
- Chest Trauma
- Abdominal Trauma
- MusculoSkelatal and Spine Trauma
- Burns
- Triage and Transport
- Analgesia and Sedation

Pediatric Trauma Score

	<u>+ 2</u>	<u>+ 1</u>	<u>- 1</u>
Consciousness	awake	Obtunded	Coma
Airway	Normal	maintainable	Un-maintainable
BP (pulses) (mmHg-children>8y	CP+ / PP- r) >90	+ CP+/PP- 50–90	CP- / PP- < 50
Open wounds penetrating	Νο	Minor	Major or
Fractures	Νο	Single and closed	Multiple or open
Weight (Kg)	> 20	10 – 20	< 10

Conclusion

- Prevention of cardiac arrest is the best way of reducing mortality and morbidity
- ABC
- Assess, change, reassess

Conclusion

- Avoid hyperventilation during CPR
 Prefer IV/IO to TT access
 New VF/VT algorithms :
 - Single shock
 - Minimise CPR interruption
 - No pulse palpation except if rhythm change
 - Adrenaline before 3rd shock, then every two loops
 - Amiodarone before 4th shock