

AUTONOME PROVINZ BOZEN SÜDTIROL

١	7	О	П	۸	П	П	N	•

Erweiterungsprojekt zum Abbau von Sand- und Grubenschotter in den "Gandellen"

UMWELT-VORSTUDIE Richtlinie 2011/92EU – Anhang IIA				
INHALT:	PLANNUMMER:			
	DATUM: 13.01.2021			
DER BAUTRÄGER:	'			

DER TECHNIKER:

Gufler Roland

Schaffler Geom. Rudolf

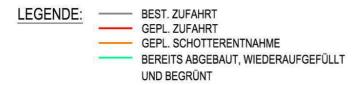
Passeirerstr.Nr.10 - 39015 - St. Leonhard (BZ) E-Mail: info@schaffler.it - www.schaffler.it Tel: 0473 656760 - Fax: 0473 657917

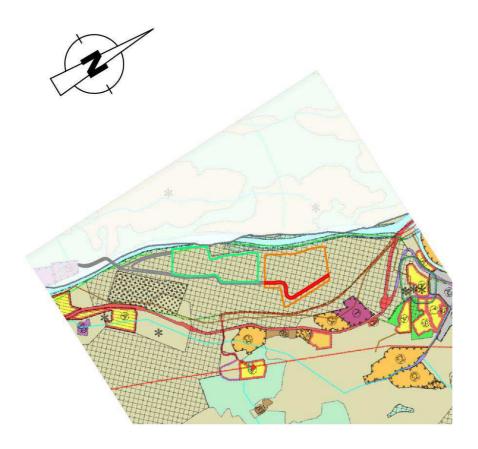

Inhalt

1.	Beschreibung des Projektes:	
	1.1 Vergleich des Bauvorhabens mit dem Bauleitplan	
	1.2 Vergleich des Bauvorhabens mit dem Landschaftsplan	
	Projektgröße	
	Kumulierung mit anderen Projekten	
4.	Nutzung der natürlichen Ressourcen	
	4.1 Boden	
	4.2 Wasser	. 6
	4.3 Biologische Vielfalt	. 6
	Flora	. 6
	Fauna	. 7
5.	Abfallerzeugung	
	Mögliche negative Auswirkungen auf die Umwelt:	15
6.	Umweltverschmutzung und Belästigung	
	6.1 Schadstoff-Emission und CO2 -Bilanz	
	6.2 Lärmemission	15
	6.3 Staubbelästigung	16
	6.4 Verschmutzung von Wasser und Boden	16
7.	Risiken schwerer Unfälle, Katastrophen, einschließlich durch Klimawandel	
	edingte Risiken	16
	7.1 Unfälle	16
	7.2 Katastrophen durch Naturgefahren	16
	7.3 Durch den Klimawandel bedingte Risiken	
8.	Risiken für die menschliche Gesundheit (Wasser- und Luftverschmutzung)	
	Standort des Projektes	
	9.1 Bestehende Landnutzung	
	9.2 Reichtum, Qualität und Regenerationsfähigkeit der natürlichen Ressourcen d	
	Gebiets	
	9.3 Belastbarkeit der Natur unter besonderer Berücksichtigung folgender Gebiete)
1(). Merkmale der potenziellen Auswirkungen	
	10.1 Art und Ausmaß der Auswirkungen (geografisches Gebiet und Bevölkerung)	
	10.2 Grenzüberschreitender Charakter der Auswirkungen	
	10.3 Schwere und Komplexität der Auswirkungen	
	10.4 Wahrscheinlichkeit von Auswirkungen	
	10.5 Von den Auswirkungen betroffene Personen	
	10.6 Erwarteter Eintrittszeitpunkt, Dauer, Häufigkeit und Reversibilität der	
		22
	Auswirkungen	 22
1 -	I. Ausgleichsmaßnamen	
•	11.1 Wiederherstellung des betroffenen Gebiets	23
	11.2 Schaffung von Lebensräumen für Kleinstlebewesen	53
	11.3 Umweltausgleichsmaßnahmen der Gemeinde St.Leonhard	
12		23

1. Beschreibung des Projektes:

Beim vorliegenden Projekt handelt es sich um eine Erweiterung der Grube zum Abbau von Sand- und Grubenschotter in den "Gandellen" in der Gemeinde St. Leonhard. Es wurden bereits Genehmigungen am 20.Juni 2008 (Prot.Nr.35.4/73.03/339088) und am 07.09.2010 (Prot.Nr.35.2/73.07/515295) erteilt. Da die dort vorgesehene Abbaumenge mittlerweile erreicht ist, wird mit vorliegenden Projekt um eine Erweiterung Richtung Norden angesucht. Der Großteil der bereits abgebauten Menge wurde mittlerweile wieder mit Aushubmaterial aus der Umgebung aufgeschüttet und begrünt.

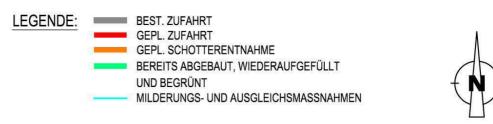

LUFTAUFNAHME



1.1 Vergleich des Bauvorhabens mit dem Bauleitplan

Die gesamte Eingriffsfläche befindet sich im Landwirtschaftsgebiet mit besonderer landwirtschaftlicher Bindung.

BAULEITPLAN 1:10000





1.2 Vergleich des Bauvorhabens mit dem Landschaftsplan

Die gesamte Eingriffsfläche befindet sich im Landwirtschaftsgebiet von landschaftlichem Interesse und in der Bannzone.

LANDSCHAFTSPLAN 1:5000

2. Projektgröße

Mit dem vorliegenden Projekt wird um eine Erweiterung der Grube Richtung Norden zum Abbau von ca. 399.136m³ angesucht. Diese Menge soll den Bedarf im Passeiertal von ca.40.000m³ pro Jahr für mindestens 10 Jahre abdecken.

Mit dem Eigentümer der GP.2303/1 und 2301/1 K.G.St.Leonhard Moosmair Christoph besteht bereits eine Vereinbarung die geplanten Abbaumaßnahmen durch zu führen.

Zum Ablauf der zu verrichtenden Arbeiten:

- -Zufahrt über den bereits bestehenden Zufahrtsweg vom best. Schotterwerk aus
- -Umzäunung der Grubenfläche
- -Errichtung von seitlichen Erddämmen mit dem vorhandenen Mutterboden
- -Aushub und Abtransport des vorhandenen Schottermaterials
- -Wiederverfüllung der Grube mit Aushubmaterial aus der Umgebung
- -Bedecken der Oberfläche durch Rückbau der Erddämme
- -Wiederherstellen der Oberfläche
- -Wiederbegrünung der Fläche mit Futterwiesensamen

Das vorliegende Projekt unterliegt der UVP-Pflicht. Die Abbaufläche beläuft sich auf ca.31.132m².

Querneigung Gelände 0%
Längsneigung 3%
Quote 645 bis 650m
Gesamtfläche Abbau ca.3,20ha
Abbautiefe ca. 13 bis 16m
Seitlicher Böschungswinkel ca.50°
Abbauvolumen ca.399.136m³
Abtragvolumen Humus mit 20-30cm – entspricht 7.783m³

3. Kumulierung mit anderen Projekten

Eine Kumulierung mit anderen bestehenden oder neuen Projekten ist den Abbau betreffend nicht möglich. Dieser wird nämlich für Sand, Schotter und zur Betonherstellung verwendet. Für die Wiederauffüllung mit Aushubmaterial kann hingegen sehr wohl eine Kumulierung mit Projekten, wo Aushubmaterial anfällt in Betracht gezogen werden. Diese Projekte befinden sich in der Umgebung und entwickeln sich jährlich aus der Bautätigkeit in den einzelnen Gemeinde wie St.Martin, St.Leonhard und Moos. Ebenso kann Material aus Murenabgängen oder aus Schlammlawinen bei Bedarf zur Auffüllung abgelagert werden. Es kann auch sein, dass das anfallende Material beim Entleeren der umliegenden Rückhaltebecken von Seiten der Wildbachverbauung, in der Grube abgelagert wird.

4. Nutzung der natürlichen Ressourcen

Als zentrale, durch das gegenständliche Vorhaben beanspruchte natürliche Ressource darf der Boden, in Form der benötigten Flächen, gelten. Es soll an dieser Stelle bereits vorweggenommen werden, dass die betreffenden Oberflächen nicht als ökologisch wertvolle oder prioritäre Standorte oder Lebensräume anzusprechen sind und überdies nach Abschluss der Wiederverfüllung wieder in den Ausgangszustand rückgeführt werden.

4.1 Boden

Die natürliche Ressource Boden erfährt durch das gegenständliche Projekt eine massive, dafür aber lediglich temporäre Beeinträchtigung. Die oberste Bodenschicht aus Vegetationsdecke und Humus (~20-30 cm) wird zu Beginn der Arbeiten abgetragen und in Form eines Damms rund um die Abbaufläche aufgeschüttet, bzw. zwischengelagert. Geeignetes Schottermaterial wird entnommen und verarbeitet, während ungeeignetes Material wieder eingebracht wird. Nach Erschöpfung der Schottergrube wird die selbige wieder verfüllt und die Oberfläche geformt, wodurch der Ausgangszustand als wiederhergestellt betrachtet werden kann. Die Verfüllung der unteren Schichten durch anderweitiges Material hat keine Auswirkungen auf die künftige Nutzung der Oberfläche. Aus der Erfahrung des bisherigen Abbaus kann man ableiten, dass das anfallende Aushubmaterials in diversen Aufbereitungsformen gänzlich verwendet werden kann. Der Boden, bzw. Flächenverbrauch, im Sinne der Versiegelung ist aus ökologischer Perspektive kaum relevant.

4.2 Wasser

Die Schottergrube befindet sich auf der orographisch rechten Seite der Passer. Die Grubensohle ist vom Bachrand ca.35m entfernt. Der Grundwasserspiegel der Grube liegt ca.10m unterhalb des Wasserspiegels der Passer und hängt im Wesentlichen nicht von der Wasserführung der Passer ab. Viel mehr sind die Infiltrationen von den seitlichen Talseiten dafür ausschlaggebend. Da diese in ihrer Oberfläche viel Fels aufweisen, wird das anfallende Regenwasser abgeleitet und in den Talboden gesammelt.

Die Aushubtiefe wird auf 1m über den Grundwasserspiegel festgelegt, wodurch das Grundwasser nicht verschmutzt wird.

Der Stand des Grundwassers wurde bei der Erstellung des Projektes erhoben. Es wurden ein Punkt auf der Südseite in der Grube und ein Punkt auf der Ostseite außerhalb der Grube aufgemessen. Von diesen Höhen aus und nach Absprache mit dem Geologen Dr.Konrad Messner aus Algund wurden die Aushubtiefen festgelegt und das Projekt erstellt.

4.3 Biologische Vielfalt

Flora

Für die Umsetzung des projektierten Vorhabens werden Fettwiesenflächen freigelegt. Die ökologische Relevanz der bestehenden Fettwiese ist von untergeordneter Bedeutung, da sie keine ökologisch bedeutsamen, geschützten oder prioritären Lebensräume oder Arten beinhalten. Nach der temporären Beeinträchtigung werden die Flächen wiederhergestellt und in derselben Art und Weise weiter genutzt wie bislang. Die von den Flächen gebotene Lebensraumqualität erfährt demnach keine einschneidenden, nachhaltigen Veränderungen. Die Gräser der umliegenden Wiesen werden, neben den gesäten Grassorten, auf der betroffenen Fläche wieder wachsen.

Die Klassifizierung der vorgefundenen Lebensräume basiert auf der "Checkliste der Lebensräume Südtirols" von Wallnöfer, Hilpold, Erschbamer und Wilhalm in Gredleriana Vol. 7/2007. Aufgrund der vorgefundenen floristischen Artengarnitur entsprechen die vorgefundenen Flächen weitestgehend nachfolgenden Lebensraumtypen:

46000 - Fettwiese

46120- Fette Ausbildung

Die temporäre Zerstörung derselben hat demnach keine nennenswerten Auswirkungen auf die floristischen Gegebenheiten vor Ort, im Sinne des Schutzes bedrohter und/oder

geschützter Arten. Nach der Beendigung der Tätigkeit und der Wiederbegrünung weist die Fläche unveränderte Eigenschaften zum derzeitigen Stand auf.

Fauna

Zur Abklärung der faunistischen Gegebenheiten vor Ort wurden die zur Verfügung stehenden Datenquellen konsultiert und eine Selektion der betreffenden Listen hinsichtlich Konformität der betroffenen Lebensräume, bzw. der vorherrschenden biotischen wie abiotischen Umweltfaktoren vorgenommen. Im Hinblick auf die Beurteilung der faunistischen Gegebenheiten wurden demnach nur geschützte oder prioritäre Arten aus der selektierten Liste betrachtet. Die Informationen zu potenziell vorkommenden Tierarten im Untersuchungsgebiet stammen aus dem Flora Fauna-Portal des Naturmuseums Südtirol. Nachfolgend findet sich ein Auszug der im betroffenen Quadranten 9133/3 vorkommenden Tierarten.

Art	Tiergruppe	Letzte Beobachtung
Salamandra salamandra (Feuersalamander)	Amphibien, Lurche (Amphibia)	2014
Apodemus sylvaticus (Waldmaus)	Echte Mäuse und Wühlmäuse (Muroidea)	2014
Arvicola amphibius (Schermaus)	Echte Mäuse und Wühlmäuse (Muroidea)	2020
Microtus arvalis (Feldmaus)	Echte Mäuse und Wühlmäuse (Muroidea)	2017
Mus domesticus (Westliche Hausmaus)	Echte Mäuse und Wühlmäuse (Muroidea)	2019
Barbastella barbastellus (Mopsfledermaus)	Fledermäuse (Chiroptera)	2005
Eptesicus nilssonii (Nordfledermaus)	Fledermäuse (Chiroptera)	2001
Eptesicus serotinus (Breitflügelfledermaus)	Fledermäuse (Chiroptera)	1997
Myotis oxygnathus (Kleines Mausohr, Myotis blythii)	Fledermäuse (Chiroptera)	1927
Nyctalus leisleri (Kleinabendsegler)	Fledermäuse (Chiroptera)	2010
Nyctalus noctula (Abendsegler)	Fledermäuse (Chiroptera) Fledermäuse (Chiroptera)	1996 2003
Pipistrellus kuhlii (Weißrandfledermaus)	, ,	
Pipistrellus pipistrellus (Zwergfledermaus)	Fledermäuse (Chiroptera)	1998
Plecotus auritus (Braunes Langohr)	Fledermäuse (Chiroptera)	2000
Antaxius pedestris (Atlantische Bergschrecke)	Heuschrecken (Orthoptera)	2014
Barbitistes obtusus (Südalpen- Säbelschrecke)	Heuschrecken (Orthoptera)	1992
Chorthippus apricarius (Feld- Grashüpfer)	Heuschrecken (Orthoptera)	2014
Chorthippus biguttulus (Nachtigall-Grashüpfer)	Heuschrecken (Orthoptera)	2014
Chorthippus brunneus (Brauner Grashüpfer)	Heuschrecken (Orthoptera)	2014
Chorthippus dorsatus (Wiesengrashüpfer)	Heuschrecken (Orthoptera)	2014
Decticus verrucivorus (Gemeiner Warzenbeißer)	Heuschrecken (Orthoptera)	2015
		7

Euthystira brachyptera (Kleine Goldschrecke)	Heuschrecken (Orthoptera)	2013
Gomphocerippus rufus (Rote Keulenschrecke)	Heuschrecken (Orthoptera)	2014
Gryllotalpa gryllotalpa (Maulwurfsgrille)	Heuschrecken (Orthoptera)	2017
Gryllus campestris (Feldgrille) Mecostethus parapleurus (Grüne Lauchschrecke)	Heuschrecken (Orthoptera) Heuschrecken (Orthoptera)	2017 2013
Nemobius sylvestris (Waldgrille) Oedipoda caerulescens (Blauflügelige Ödlandschrecke)	Heuschrecken (Orthoptera) Heuschrecken (Orthoptera)	2013 2019
Pholidoptera aptera (Alpen- Strauchschrecke)	Heuschrecken (Orthoptera)	2013
Pholidoptera griseoaptera (Gewöhnliche Strauchschrecke)	Heuschrecken (Orthoptera)	2014
Platycleis albopunctata (Graue Beißschrecke)	Heuschrecken (Orthoptera)	2015
Pseudochorthippus parallelus (Gemeiner Grashüpfer)	Heuschrecken (Orthoptera)	2013
Sphingonotus caerulans (Blauflügelige Sandschrecke)	Heuschrecken (Orthoptera)	1866
Stauroderus scalaris (Gebirgsgrashüpfer)	Heuschrecken (Orthoptera)	2013
Tetrix subulata (Säbeldornschrecke)	Heuschrecken (Orthoptera)	2013
Tetrix tenuicornis (Langfühler- Dornschrecke)	Heuschrecken (Orthoptera)	2013
Tettigonia cantans (Zwitscherschrecke)	Heuschrecken (Orthoptera)	2013
Àeshna cyanea (Blaugrüne Mosaikjungfer)	Libellen (Odonata)	2018
Aeshna juncea (Torf- Mosaikjungfer)	Libellen (Odonata)	2011
Anax imperator (Große Königslibelle)	Libellen (Odonata)	2011
Coenagrion puella (Hufeisen- Azurjungfer)	Libellen (Odonata)	2011
Ischnura elegans (Große Pechlibelle)	Libellen (Odonata)	2011
Libellula depressa (Plattbauch) Talpa europaea (Maulwurf)	Libellen (Odonata) Maulwürfe (Talpidae)	2011 2019
Anguis fragilis agg. (Blindschleiche)	Reptilien, Kriechtiere (Reptilia)	2014
Coronella austriaca (Schlingnatter, Glattnatter)	Reptilien, Kriechtiere (Reptilia)	2014
Hierophis viridiflavus (Gelbgrüne Zornnatter)	Reptilien, Kriechtiere (Reptilia)	1872
Lacerta bilineata (Smaragdeidechse)	Reptilien, Kriechtiere (Reptilia)	2013
Natrix natrix (Ringelnatter) Natrix tessellata (Würfelnatter)	Reptilien, Kriechtiere (Reptilia) Reptilien, Kriechtiere (Reptilia)	2016 2014
Podarcis muralis (Mauereidechse)	Reptilien, Kriechtiere (Reptilia)	2017
Vipera aspis (Aspisviper) Zamenis longissimus (Äskulapnatter)	Reptilien, Kriechtiere (Reptilia) Reptilien, Kriechtiere (Reptilia)	1912 2013
Dryomys nitedula (Baumschläfer) Glis glis (Siebenschläfer)	Schläfer (Gliridae) Schläfer (Gliridae)	2015 2013
Muscardinus avellanarius (Haselmaus)	Schläfer (Gliridae)	2015

Crocidura suaveolens	Spitzmäuse (Soricidae)	2019
(Gartenspitzmaus)	Spitziffause (Soficidae)	2010
Neomys anomalus	Spitzmäuse (Soricidae)	2019
(Sumpfspitzmaus)	opitzmado (conolado)	
Sorex alpinus (Alpenspitzmaus)	Spitzmäuse (Soricidae)	2019
Sorex araneus s.lat.	Spitzmäuse (Soricidae)	2014
(Waldspitzmaus)		
Sorex minutus (Zwergspitzmaus)	Spitzmäuse (Soricidae)	2019
Aglais urticae (Kleiner Fuchs)	Tagfalter (Papilionoidea)	2016
Apatura ilia (Kleiner	Tagfalter (Papilionoidea)	1925
Schillerfalter)		
Carterocephalus palaemon	Tagfalter (Papilionoidea)	1956
(Gelbwürfeliger Dickkopffalter)		
Erebia triarius (Prunner's	Tagfalter (Papilionoidea)	1920
Mohrenfalter)	- () (B)	1005
Hipparchia fagi (Großer	Tagfalter (Papilionoidea)	1925
Waldportier)	Toofolton (Donillonoidon)	2016
Lasiommata megera	Tagfalter (Papilionoidea)	2016
(Mauerfuchs) Limenitis populi (Großer	Tagfalter (Papilionoidea)	2000
Eisvogel)	ragialler (Fapillorioldea)	2000
Lycaena alciphron (Violetter	Tagfalter (Papilionoidea)	1956
Feuerfalter)	ragiaiter (rapiliorioldea)	1000
Parnassius apollo (Apollofalter)	Tagfalter (Papilionoidea)	2010
Vanessa cardui (Distelfalter)	Tagfalter (Papilionoidea)	2015
Acanthis flammea (Birkenzeisig)	Vögel	2016
Accipiter gentilis (Habicht)	Vögel	2017
Accipiter nisus (Sperber)	Vögel	2017
Acrocephalus schoenobaenus	Vögel	2003
(Schilfrohrsänger)	9	
Actitis hypoleucos	Vögel	2016
(Flussuferläufer)	-	
Aegithalos caudatus	Vögel	2017
(Schwanzmeise)		
Aegolius funereus	Vögel	2017
(Rauhfusskauz)		2012
Alauda arvensis (Feldlerche)	Vögel	2016
Alcedo atthis (Eisvogel)	Vögel	2014 2016
Anas crecca (Krickente)	Vögel	2017
Anas platyrhynchos (Stockente) Anas querquedula (Knäkente)	Vögel Vögel	2017
Anthus pratensis (Wiesenpieper)	Vögel	2016
Anthus spinoletta (Bergpieper)	Vögel	2017
Anthus trivialis (Baumpieper)	Vögel	2017
Apus apus (Mauersegler)	Vögel	2017
Ardea cinerea (Fischreiher)	Vögel	2017
Asio flammeus (Sumpfohreule)	Vögel	2003
Asio otus (Waldohreule)	Vögel	2006
Aythya ferina (Tafelenté)	Vögel	2016
Aythya fuligula (Reiherente)	Vögel	2015
Bombycilla garrulus	Vögel	2013
(Seidenschwanz)		
Bubulcus ibis (Kuhreiher)	Vögel	2017
Buteo buteo (Mäusebussard)	Vögel	2017
Calidris alpina	Vögel	2016
(Alpenstrandläufer)	V"1	0017
Carduelis carduelis (Distelfink,	Vögel	2017
Stieglitz)	Vägal	2016
Carduelis citrinella	Vögel	2010
(Zitronenzeisig, Zitronengirlitz) Carpodacus erythrinus	Vögel	2004
Oarpouacus erytiiiius	v Ug o i	2004

(Karmingimpal)		
(Karmingimpel) Certhia familiaris	Vögel	2017
	vogei	2017
(Waldbaumläufer) Charadrius dubius	Vägal	2013
(Flussregenpfeifer)	Vögel	2010
Chloris chloris (Grünfink,	Vögel	2017
· ·	vogei	2017
Grünling) Chroicocephalus ridibundus	Vögel	2016
(Lachmöwe)	vogei	2010
	Vägal	2013
Ciconia ciconia (Weissstorch) Ciconia nigra (Schwarzstorch)	Vögel Vögel	2017
Cinclus cinclus (Wasseramsel)	Vögel	2017
Circus aeruginosus (Rohrweihe)	Vögel Vögel	2015
Coccothraustes coccothraustes	Vögel Vögel	2015
(Kernbeißer)	vogei	_0.0
Columba palumbus	Vögel	2017
(Ringeltaube)	vogei	2017
Corvus corax (Kolkrabe)	Vögel	2017
Corvus corone (Aaskrähe)	Vögel	2017
Cuculus canorus (Kuckuck)	Vögel	2017
Cyanistes caeruleus (Blaumeise)	Vögel	2017
Delichon urbicum	Vögel	2017
(Mehlschwalbe)	vogei	2017
Dendrocopos major (Buntspecht)	Vögel	2017
Dryocopus martius	Vögel	2017
(Schwarzspecht)	Vogel	_0
Emberiza cia (Zippammer)	Vögel	2017
Emberiza citrinella (Goldammer)	Vögel	2017
Erithacus rubecula (Rotkehlchen)	Vögel	2017
Falco subbuteo (Baumfalke)	Vögel	2016
Falco tinnunculus (Turmfalke)	Vögel	2017
Ficedula albicollis	Vögel	2013
(Halsbandschnäpper,	Vogei	
Halsbandfliegenschnäpper)		
Ficedula hypoleuca	Vögel	2016
(Trauerschnäpper,	• og o:	
Trauerfliegenschnäpper)		
Fringilla coelebs (Buchfink)	Vögel	2017
Fringilla montifringilla (Nordfink,	Vögel	2017
Bergfink)		
Gallinago gallinago (Bekassine)	Vögel	2013
Garrulus glandarius	Vögel	2017
(Eichelhäher)		
Glaucidium passerinum	Vögel	2017
(Sperlingskauz)	- 3 -	
Grus grus (Kranich)	Vögel	1999
Hippolais icterina (Gelbspötter)	Vögel	2016
Hippolais polyglotta	Vögel	2012
(Orpheusspötter)	3	
Hirundo rustica (Rauchschwalbe)	Vögel	2017
Jynx torquilla (Wendehals)	Vögel	2017
Lanius collurio (Neuntöter,	Vögel	2016
Rotrückenwürger)		
Larus michahellis	Vögel	2008
Linaria cannabina (Hänfling,	Vögel	2016
Bluthänfling)		
Lophophanes cristatus	Vögel	2017
(Haubenmeise)	-	
Loxia curvirostra	Vögel	2017
(Fichtenkreuzschnabel)	-	
Lullula arborea (Heidelerche)	Vögel	2016

		0044
Luscinia megarhynchos	Vögel	2011
(Nachtigall)		
Milvus milvus (Rotmilan)	Vögel	2016
Monticola saxatilis (Steinrötel)	Vögel	2016
Motacilla alba (Bachstelze)	Vögel	2017
Motacilla cinerea (Gebirgsstelze)	Vögel	2017
Motacilla flava (Schafstelze)	Vögel	2016
Muscicapa striata	Vögel	2017
•	vogei	2017
(Grauschnäpper)	Maria I	2017
Nucifraga caryocatactes	Vögel	2017
(Tannenhäher)		0000
Numenius arquata (Grosser	Vögel	2003
Brachvogel)		
Numenius phaeopus	Vögel	1994
(Regenbrachvogel)		
Oenanthe oenanthe	Vögel	2017
(Steinschmätzer)	· ·	
Òriolus oriolus (Pirol)	Vögel	2014
Parus major (Kohlmeise)	Vögel	2017
Passer domesticus	Vögel	2017
(Haussperling)	Voger	
	Vägal	2017
Passer italiae (Italiensperling)	Vögel	2010
Passer montanus (Feldsperling)	Vögel	
Pastor roseus (Rosenstar)	Vögel	2002
Periparus ater (Tannenmeise)	Vögel	2017
Pernis apivorus	Vögel	2017
(Wespenbussard)		
Phalacrocorax carbo (Kormoran)	Vögel	2017
Phoenicurus ochruros	Vögel	2017
(Hausrotschwanz)	-	
Phoenicurus phoenicurus	Vögel	2017
(Gartenrotschwanz)	-9-	
Phylloscopus bonelli	Vögel	2017
(Berglaubsänger)	v og or	
Phylloscopus collybita	Vögel	2017
	vogei	
(Weidenlaubsänger, Zilpzalp)	Vägal	2017
Phylloscopus sibilatrix	Vögel	2017
(Waldlaubsänger)	M21	2017
Phylloscopus trochilus	Vögel	2017
(Fitislaubsänger, Fitis)		
Pica pica (Elster)	Vögel	2017
Picoides tridactylus	Vögel	2017
(Dreizehenspecht)		
Picus canus (Grauspecht)	Vögel	2017
Picus viridis (Grünspecht)	Vögel	2017
Podiceps nigricollis	Vögel	2002
(Schwarzhalstaucher)	- 9 -	
Poecile montanus	Vögel	2017
(Weidenmeise)	Voger	
Poecile palustris (Sumpfmeise)	Vägal	2017
	Vögel	2017
Prunella collaris (Alpenbraunelle)	Vögel	2017
Prunella modularis	Vögel	2017
(Heckenbraunelle)		0047
Ptyonoprogne rupestris	Vögel	2017
(Felsenschwalbe)		
Pyrrhocorax graculus	Vögel	2014
(Alpendohle)		
Pyrrhula pyrrhula (Dompfaff,	Vögel	2017
Gimpel)	-	
Regulus ignicapillus	Vögel	2017
(Sommergoldhähnchen)	S	
(

Regulus regulus	Vögel	2017
(Wintergoldhähnchen)		
Saxicola rubetra	Vögel	2017
(Braunkehlchen)		
Saxicola rubicola	Vögel	2016
(Schwarzkehlchen)		
Scolopax rusticola	Vögel	2015
(Waldschnepfe)		
Serinus serinus (Girlitz)	Vögel	2017
Sitta europaea (Kleiber)	Vögel	2017
Spinus spinus (Zeisig,	Vögel	2017
Erlenzeisig)		
Streptopelia decaocto	Vögel	2016
(Türkentaube)	-	
Streptopelia turtur (Turteltaube)	Vögel	2016
Strix aluco (Waldkauz)	Vögel	2017
Sturnus vulgaris (Star)	Vögel	2017
Sylvia atricapilla	Vögel	2017
(Mönchsgrasmücke)	_	
Sylvia borin (Gartengrasmücke)	Vögel	2015
Sylvia communis	Vögel	2016
(Dorngrasmücke)	Ü	
Sylvia curruca	Vögel	2017
(Klappergrasmücke)	- 9 -	
Tachymarptis melba	Vögel	2017
(Alpensegler)	- 9 -	
Tichodroma muraria	Vögel	2017
(Mauerläufer)	9	
Tringa glareola	Vögel	2017
(Bruchwasserläufer)	. 090.	
Tringa ochropus	Vögel	2017
(Waldwasserläufer)	• - 1 - 1	
Troglodytes troglodytes	Vögel	2017
(Zaunkönig)	. 090.	
Turdus iliacus (Rotdrossel)	Vögel	2015
Turdus merula (Amsel)	Vögel	2017
Turdus philomelos (Singdrossel)	Vögel	2017
Turdus pilaris	Vögel	2017
(Wacholderdrossel)	· ogo.	
Turdus torquatus (Ringdrossel,	Vögel	2017
Ringamsel)	· ogo.	
Turdus viscivorus (Misteldrossel)	Vögel	2017
Upupa epops (Wiedehopf)	Vögel	2016
Vanellus vanellus (Kiebitz)	Vögel	2008
Anthocoris nemoralis	Wanzen (Heteroptera)	2006
Coreus marginatus	Wanzen (Heteroptera)	2019
(Lederwanze)	wanzen (neteroptera)	
Deraeocoris ruber	Wanzen (Heteroptera)	2019
Dolycoris baccarum	Wanzen (Heteroptera)	2013
(Beerenwanze)	wanzen (neteroptera)	
Eurydema dominulus (Zierliche	Wanzen (Heteroptera)	1980
Gemüsewanze)	wanzen (neteroptera)	
Eurydema oleracea (Kohlwanze)	Wanzen (Heteroptera)	1980
Eurydema ornata	Wanzen (Heteroptera)	1870
(Schmuckwanze)	wanzen (neteroptera)	
Eysarcoris venustissimus	Wanzen (Heteroptera)	2013
(Schillerwanze, Dunkler	vvanzen (neteroptera)	2010
Dickwanst)		
Graphosoma lineatum	Wanzen (Heteroptera)	2019
(Streifenwanze)	wanzen (Heteroptera)	20.0
Leptoglossus occidentalis	Wanzen (Heteroptera)	2019
Loptogrossus occidentalis	vanzon (neteroptera)	20.0

(Amarikania da Kiafawawana)		
(Amerikanische Kiefernwanze)	Manzon (Hatarantara)	2019
Lygaeus equestris (Gemeine	Wanzen (Heteroptera)	2013
Ritterwanze)	Managa (Hatayantaya)	1980
Nabis rugosus (Rotbraune	Wanzen (Heteroptera)	1900
Sichelwanze)	Maria (Halamatan)	2010
Oxycarenus lavaterae	Wanzen (Heteroptera)	2019
(Lindenwanze, Malvenwanze)		0000
Pinalitus viscicola	Wanzen (Heteroptera)	2006
Pyrrhocoris apterus (Gemeine	Wanzen (Heteroptera)	2019
Feuerwanze)		
Raglius alboacuminatus	Wanzen (Heteroptera)	2019
Reduvius personatus (Maskierter	Wanzen (Heteroptera)	2013
Strolch, Staubwanze)		
Rhaphigaster nebulosa (Graue	Wanzen (Heteroptera)	2019
Gartenwanze)		
Rhynocoris iracundus agg.	Wanzen (Heteroptera)	1870
(Artengruppe Zornige		
Raubwanze)		
Rhynocoris rubricus	Wanzen (Heteroptera)	1870
Stenodema laevigata	Wanzen (Heteroptera)	1869
Syromastus rhombeus	Wanzen (Heteroptera)	2019
(Rhombenwanze)	, ,	
Tropidothorax leucopterus	Wanzen (Heteroptera)	2013
(Schwalbenwurzwanze)	, ,	
Aculepeira ceropegia (Éichblatt-	Webspinnen (Araneae)	2014
Radspinne)	. , ,	
Antistea elegans	Webspinnen (Araneae)	2011
Anyphaena accentuata	Webspinnen (Araneae)	2013
Araneus diadematus (Garten-	Webspinnen (Araneae)	2016
Kreuzspinne)	(
Argiope bruennichi	Webspinnen (Araneae)	2014
(Wespenspinne)	(
Centromerita bicolor	Webspinnen (Araneae)	2011
Erigone dentigera	Webspinnen (Araneae)	2011
Frontinellina frutetorum	Webspinnen (Araneae)	2013
Gongylidiellum latebricola	Webspinnen (Araneae)	2011
Linyphia triangularis	Webspinnen (Araneae)	2014
Mermessus trilobatus	Webspinnen (Araneae)	2011
Metellina mengei	Webspinnen (Araneae)	2013
Metellina segmentata	Webspinnen (Araneae)	2014
(Herbstspinne)	Webspiriteri (Marieae)	-
Microlinyphia pusilla	Webspinnen (Araneae)	2011
Nuctenea umbratica	Webspinnen (Araneae)	2014
(Spaltenkreuzspinne)	Webspiriteri (Araneae)	
Oedothorax agrestis	Woheningen (Arangae)	2011
Pisaura mirabilis (Listspinne)	Webspinnen (Araneae)	2016
` ' '	Webspinnen (Araneae)	2016
Salticus zebraneus	Webspinnen (Araneae)	2010
Tiso vagans	Webspinnen (Araneae)	2011
Xysticus audax	Webspinnen (Araneae)	2014

Es sind keine geschützten oder schützenswerten Arten im Sinne der geltenden Gesetze und Richtlinien in einer nachhaltig negativen Art und Weise betroffen. Das Vorkommen verschiedener Mäuse -Arten, wie z. B. der Feldmaus (Microtus arvalis) und der Schermaus (Arvicola amphibius), sowie des Maulwurfs (Talpa europaea) innerhalb der Flächen ist als nahezu sicher einzustufen. Die vorhandene Fettwiese begünstigen die Ansiedlung dieser Arten. Diese Tierarten werden zuerst in angrenzenden Wiesen abwandern und nach dem erfolgtem Abbau und der Wiederherstellung der Wiesenflächen wieder auf der betroffenen Fläche ansiedeln.

Wildtiere wie Rehe, Hirsche oder Hasen sind hier nicht anzutreffen, da die Fläche nach allen Seiten hin offen ist und an keine Waldfläche, wo die Tiere Schutz und Zuflucht finden können, angrenzt.

Das Risiko für eine Beeinträchtigung geschützter oder seltener Arten der Tagfalter und Heuschrecken, sowie andere Arthropoden, welche in den Artenlisten des Flora Fauna-Portals für den betreffenden Quadranten angeführt werden, muss differenziert beurteilt werden. Im Gegensatz zu Heuschrecken, sind die allermeisten geschützten oder seltenen Tagfalter-Arten für die Reproduktion auf das Vorhandensein spezifischer Futterpflanzen für die Larven angewiesen. Eine Veränderung der Einflussfaktoren, oder im Extremfall deren Zerstörung, kann in diesem Zusammenhang zu einer etwaigen Beeinträchtigung der Schmetterlings-Fauna führen. Aufgrund der hohen Verfügbarkeit ähnlicher Flächen im Umland sowie des temporären Charakters der Umweltvorstudie ist allerdings nicht mit nachhaltigen, negativen Folgen für die betreffenden Populationen zu rechnen.

Durch die Wiederherstellung des Ausgangszustandes nach Abschluss der Wiederverfüllung und Begrünung kann eine langfristige und nachhaltige negative Beeinträchtigung der örtlichen Fauna weitestgehend ausgeschlossen werden.

5. Abfallerzeugung

Das, nach der Entfernung des Mutterbodens anfallende Schottermaterial wird von der Firma Gufler Roland in das angrenzende Schotterwerk transportiert und dort verarbeitet. Für das gegenständliche Projekt wurde ein Abfallbewirtschaftungsplan ausgearbeitet, welcher sich auf die entstehenden Restprodukte der Schotterverarbeitung bezieht. Nachfolgend werden nur die wesentlichen Inhalte des ausgearbeiteten Berichtes wiedergegeben. Bei diesem Projektvorhaben zum Abbau von Grubenschotter haben wir es im Wesentlichen mit fünf Typologien von Abfällen zu tun. Alle sind als inerte nicht gefährliche Materialien klassifiziert:

1. Mutterboden:

Die vor dem Abbau abgetragene Vegetationsschicht wird dazu verwendet, um während der Arbeiten die gesamte jeweilige Grube mit einem Damm zu schützen und nach Wiederverfüllung das Areal abzudecken. Der umgelagerte Mutterboden ist chemisch völlig gleich mit dem Ausgangsprodukt, es wird nur durch den Abtrag dieser Schicht eine Umlagerung vorgenommen.

2. Sand- und Grubenschotter:

Der abgebaute Schotter wird in der direkt angrenzenden Schottergrube verarbeitet und nicht wieder zurückgeführt.

3. Auffüllung mit Aushubmaterial:

Das Aushubmaterial, welches für die Wiederauffüllung der Grube verwendet wird, kommt aus umliegenden Baustellen und ist ohne Verunreinigung.

4. Aufbereitungsrückstände vom Schotterwerk:

Die Aufbereitungsrückstände wie lehmiges/toniges Material 0,063mm (Flins), welches beim Auswaschen und Reinigen des Materials entsteht und sich nicht zur Weiterverarbeitung eignen (Abfallkennziffer 01.04.07), sollen in der Grubenöffnung wieder rückgeführt und eingebaut werden. Sie entsprechen chemisch dem entnommenen Material und unterscheiden sich nur in der Korngröße. Der Mengenanteil beläuft sich auf ca.5% und entspricht somit einem Volumen von ca.19.956m³.

5. Überschüssiges und geprüfte Material aus der betriebseigenen Recyclinganlage:

Das eventuell überschüssiges und geprüfte Material aus der betriebseigenen Recyclinganlage (max. Korngröße 32mm) soll in der Grubenöffnung eingebaut werden. Es ist chemisch rein und somit unbedenklich.

Mögliche negative Auswirkungen auf die Umwelt:

Es sind keine negativen Auswirkungen auf die Umwelt zu erwarten da das abgelagerte Material aus Aushüben der Umgebung kommt und ohne Verunreinigung ist. Das Oberflächenwasser wird vom wieder aufgebrachten Mutterboden aufgenommen und in das darunter liegende aufgeschüttete Aushubmaterial weitergeleitet und somit gibt es hier keine wesentliche Veränderung.

Die Zwischenlagerung der Humusschicht erfolgt abschnittsweise in Form eines Dammes entlang des Grubenrandes mit einem Böschungswinkel von ca.45°. Für diese Dammflächen ist gleich nach deren Errichtung eine Begrünung vorgesehen. Dadurch können negative Auswirkungen auf die Umwelt oder auf die menschliche Gesundheit (Staubentwicklung) ausgeschlossen werden.

6. Umweltverschmutzung und Belästigung

6.1 Schadstoff-Emission und CO2 -Bilanz

Während der Abbauphase kommt es durch den Einsatz entsprechender Maschinen (Bagger, Grubenfahrzeug und LKW) zu einer temporären Mehrbelastung durch Lärm- und Schadstoffemission. Ebenso wirkt sich die Anwesenheit der Schottergrube negativ auf das örtliche Landschaftsbild aus.

Eine detaillierte Kalkulation und Gegenüberstellung der zu Erwartenden Abgas-Emission würde den Rahmen der vorliegenden Umwelt-Vorstudie sprengen, weshalb an dieser Stelle nur grundlegende Überlegungen angestellt werden können. Demnach wird festgestellt, dass die anfallenden Emissionen durch die Abbautätigkeit der eingesetzten Bagger in jedem Fall auftreten, da die Steine als Baumaterial so oder so benötigt werden, wird lediglich die Lokalisierung der Emissionen verändert. Die Transportwege des Materials durch LKWs und durch das Grubenfahrzeug zum verarbeitenden Schotterwerk ist der kürzest mögliche, da das Schotterwerk direkt angrenzt. Daher ergibt sich eine sehr günstige CO2-Bilanz, da andere Standorte weiter entfernt wären und durch den längeren Transport mehr CO2 verursachen würden.

6.2 Lärmemission

Im Hinblick auf die zu erwartende Lärmemission durch die Schottergrube wird an dieser Stelle auf die ebenfalls beiliegende Akustische Bewertung verwiesen. Nachfolgend werden die wesentlichen Inhalte des einschlägigen Berichtes wiedergegeben.

Betriebszeit: das ganze Jahr

Öffnungszeit : variabel von 7.00 bis 18.00 Uhr

Zur Verminderung der Schallausbreitung wird am seitlichen Grubenrand ein ca.3m hoher Damm aufgeworfen. Im Zuge der Abbauarbeiten entwickelt sich die Grube ca. 13 bis 16m nach unten, womit die seitliche Ausbreitung minimiert wird. Die Grube ist bereits seit über 10 Jahren in Betrieb und die Erfahrung hat gezeigt, dass der anfallende Lärm keine Belästigung für die umliegende Umgebung darstellt.

6.3 Staubbelästigung

Die Abbauflächen befinden sich unterhalb der natürlichen Bodenquote und somit zieht der ab und zu auftretende Nordwind über die Grubenabbaufläche hinweg.

Der bestehende Zufahrtsweg führt direkt vom Schotterwerk aus zur Abbaugrube. Um die Staubentwicklung in diesem Bereich zu minimieren, ist der Bereich vom Schotterwerk bis ca.30 nach der Brücke asphaltiert. Der Transportweg in der Grube soll entlang der Grubensohle verlaufen um auch dort die Ausbreitung von Staub und Lärm auf ein Minimum reduzieren zu können. Zudem ist am Wegrand eine Beregnungsanlage installiert, um der Staubentwicklung entgegenzuwirken. Die Aufschüttungsarbeiten werden über Anrampungen von der Grubensohle aus vorgenommen. Das aufgeschüttete Material soll abschnittsweise eingearbeitet und die Oberfläche begrünt werden. Somit kann die offene Grubenfläche so klein wie möglich gehalten werden.

Das am nächsten gelegene Wohnhaus befindet sich am kürzesten ca.90m und am weitesten 220m entfernt.

6.4 Verschmutzung von Wasser und Boden

Durch die Abbautätigkeit im Steinbruch ist mit keiner Verschmutzung von Wasser und / oder Boden zu rechnen. Die Abbautiefe liegt 1m über den Grundwasserspiegel. Das Auffüllmaterial kommt aus den Aushüben der umliegenden Baustellen und ist rein. Im Baubereich befinden sich keine ausgewiesenen Trinkwasserschutzgebiete oder Tiefbrunnen.

7. Risiken schwerer Unfälle, Katastrophen, einschließlich durch Klimawandel bedingte Risiken

Dieser Punkt behandelt Risiken schwerer Unfälle und/oder von Katastrophen, die für das betroffene Projekt relevant sind, einschließlich solcher, die wissenschaftlichen Erkenntnissen zufolge durch den Klimawandel bedingt sind.

7.1 Unfälle

Der Betrieb einer Schottergrube birgt naturgemäß ein gewisses Gefahrenpotenzial in sich. Zur Risikoeindämmung wird vom Betreiber selbst auf die Einhaltung entsprechender Sicherheitsmaßnahmen geachtet, welche entsprechend kommuniziert werden.

7.2 Katastrophen durch Naturgefahren

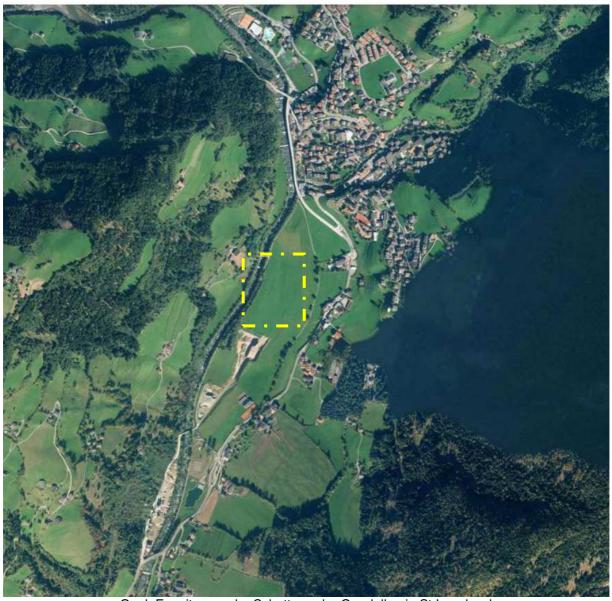
Im Zuge der Voruntersuchungen wurde Projektgebiet auf die geologische Machbarkeit hin geprüft. Der geologische Bericht des Dr. Geol. Konrad Messner aus Algund, betreffend die Erweiterung der Schottergrube , befinden sich in den Anhängen zum Projekt und geben über die geologischen Gegebenheiten Auskunft.

Geomorphologisch ist der von der Untersuchung betroffene Talbodenbereich durch grob- bis feinkörnige Bachablagerungen der Passer gekennzeichnet. Die größeren Blöcke der betroffenen Zone wurden vermutlich u.a. in Folge der zahlreichen Ausbrüche des Wildsees "Kummersee" in Rabenstein und der verheerenden Überschwemmungen, welche das Passeiertal in der Vergangenheit immer wieder betroffen haben, hier her transportiert. Teilweise sind zwischengelagerte Sandlinsen und Lagen unterschiedlicher räumlicher Ausdehnung mit grobkörnigen Kiesen, Sanden und Steinen bis Blockgröße zu erwarten. Aus geologischer Sicht setzen sich die Gesteinskomponenten aus Glimmerschiefern,

Gneisen, Amphiboliten und untergeordnet Marmoren, mit durchwegs guten Rundungsgrad und unterschiedlicher Komponentengröße (Stein-Kies-Sand Gemisch mit Blöcke) zusammen.

Im Gefahrenzonenplan der Gemeinde St.Leonhard, welcher derzeit vorliegt aber noch nicht definitiv genehmigt und in Kraft ist, ist der betroffene Bereich als "Untersicht und nicht gefährdet" ausgewiesen. Dies gilt für die Gefahrenbereiche Wasser, Massen und Lawine.

7.3 Durch den Klimawandel bedingte Risiken


Die Abschätzung möglicher durch den Klimawandel verursachter Risiken verlangt nach einer umfassenden, wissenschaftlichen Analyse unter Einbezug einer Vielzahl vorhandener und zu erhebender Daten. Die Erarbeitung einer aussagekräftigen Position zu dieser Thematik würde demnach den Rahmen der gegenständlichen Vorstudie bei weitem sprengen. Faktisch kann davon ausgegangen werden, dass sowohl Aushub als auch Wiederverfüllung des Steinbruchs bereits abgeschlossen sein werden, bevor sich auch nur kurzfristig klimawandel-basierte Effekte auswirken könnten. Insofern sind keine durch den Klimawandel bedingte Risiken abzusehen.

8. Risiken für die menschliche Gesundheit (Wasser- und Luftverschmutzung)

Siehe vorangegangenes Kapitel 6 - Umweltverschmutzung und Belästigung.

9. Standort des Projektes

Das geplante Projekt zur Erweiterung der Schottergrube "Gandellen" in der Gemeinde St.Leonhard befindet sich im Landwirtschaftsgebiet mit landschaftlicher Bindung in der Talsohle südlich von Hauptort St.Leonhard. An dieser Stelle befindet sich bereits seit dem Jahr 2009 eine Schottergrube.

Gepl. Erweiterung der Schottergrube Gandellen in St.Leonhard

9.1 Bestehende Landnutzung

Der vorgesehene Bereich für die Erweiterung der Schottergrube weist derzeit die Nutzung Fettwiese auf.

9.2 Reichtum, Qualität und Regenerationsfähigkeit der natürlichen Ressourcen des Gebiets

Wie vorab bereits mehrmals erwähnt handelt es sich beim vorliegenden Projekt um eine Erweiterung der 2008 eröffneten Schottergrube. Der Großteil der bereits abgebauten Fläche wurde mittlerweile wieder aufgefüllt, begrünt und wird wieder als Wiese von den Bauern genutzt. Ebenso soll auch der neue Grubenbereich nach dem Abbau wieder aufgefüllt und wirksam begrünt werden. Dies auch deshalb, da das Gebiet aus landschaftlicher Sicht von Bedeutung ist. Die Oberfläche wird durch die Entnahme des Materials nur geringfügig geändert und die oberflächlichen Bedingungen bleiben gleich im Vergleich zum Ist-Zustand.

Der als Abbaugut begehrte Grubenschotter selbst wird, ohne nennenswerte ökologischen Auswirkungen aus der Fläche entnommen.

Zusammenfassend kann demnach festgehalten werden, dass Reichtum, Qualität und Regenrationsfähigkeit der natürlichen Ressource des Gebietes durch die Umsetzung des projektierten Vorhabens keine gravierenden, nachhaltig negativen Veränderungen, in Vergleich zum Ausgangszustand erfahren.

9.3 Belastbarkeit der Natur unter besonderer Berücksichtigung folgender Gebiete

Das Projekt wird auf das Vorhandensein nachfolgender Gebiete untersucht: Feuchtgebiet, ufernahe Gebiete, Flussmündungen, Bergregionen, Landwirtschaftsgebiet, Waldgebiete, Naturparks, Naturreservate, Natur 2000 Gebiete, Gebiete wo Qualitätsnormen nicht eingehalten werden, Gebiete mit hoher Bevölkerungsdichte, historisch, kulturell oder archäologisch bedeutende Landschaften und Stätten.

Folgende Gebiete befinden sich im erweiterten Einflussgebiet des gegenständlichen Projektes:

- Landwirtschaftsgebiet
- Hecken und Flurgehölz
- ufernahes Gebiet

Landwirtschaftsgebiet:

In der umliegenden Umgebung des betroffenen Bereiches befinden sich Futterwiesen womit allgemein von Landwirtschaftsgebiet gesprochen werden kann. Tatsächlich erfährt das umliegende Landwirtschaftsgebiet keine Beeinträchtigung, da der umliegende Schutzdamm einen Sicht- Lärm und Staubschutz darstellt. Insofern kommt es zu keiner Beeinträchtigung ökologisch relevanter oder besonderer schützenswerter Gebiete.

Hecken und Flurgehölz:

Das auf der Westseite angrenzende Hecken und Flurgehölz erfährt die vorgesehenen Maßnahmen keine Beeinträchtigung.

Ufernahes Gebiet:

Die hinter Hecken und Flurgehölz etwas tiefer liegende Passer ist in diesen Abschnitt auf die Bachbreite begrenzt und seitlich mit Hecken bewachsen und mit Zyklopensteinen verbaut. Aufenthaltsräume für Vögel sind in diesem Bereich sehr selten. Die vorgesehenen Maßnahmen stören aber weder von der Sicht noch vom Lärme her diesen Bereich.

10. Merkmale der potenziellen Auswirkungen

Die Merkmale der potenziellen Auswirkungen werden nachfolgend einzeln hervorgehoben.

10.1 Art und Ausmaß der Auswirkungen (geografisches Gebiet und Bevölkerung)

Umwandlung des best.Kulturgrundes - Zerstörung der Vegetationsdecke

- Starke Veränderung der lokalen Lebensraumbedingungen
- Temporäre (10+ Jahre) Zerstörung der Vegetationsdecke
- Temporäre Mehrbelastung durch Schadstoffemissionen, Lärm und Staubentwicklung

Störwirkung und Belastung durch Maschineneinsatz

• Temporäre Mehrbelastung durch Schadstoffemissionen, Lärm und Staubentwicklung

Zwischenzeitliche Beeinträchtigung des lokalen Landschaftsbildes

• Umwandlung der bestehenden Futterwiesen in offenen Tagebau

10.2 Grenzüberschreitender Charakter der Auswirkungen

Es sind keine grenzüberschreitenden Auswirkungen des gegenständlichen Projektes zu erwarten.

10.3 Schwere und Komplexität der Auswirkungen

In Bezug auf ihre Schwere und Komplexität, werden jene Auswirkungen, deren Eintreten als wahrscheinlich bis sehr wahrscheinlich eingestuft wurden nachfolgend einzeln hervorgehoben und in entsprechender Weise analysiert.

Starke Veränderung der lokalen Lebensraumbedingungen:

Tritt im direkten Eingriffsbereich des zu erweiternden Bereiches der Schottergrube auf. Die betreffenden Lebensräume werden zerstört und in Abbauflächen umgewandelt, welche ihrerseits nicht als Lebensräume geeignet sind. In Anbetracht der bestehenden Nutzung der Schottergrube und der abschließenden Wiederherstellung der betreffenden Oberflächen können die zu erwartenden ökologischen Auswirkungen, trotz der massiven Beeinträchtigung als kaum nennenswert bezeichnet werden, da sie keinen nachhaltig negativen Charakter aufweisen. Der Flächen bieten nur einer geringen Anzahl an floristischen und faunistischen Arten einen angemessenen Lebensraum und werden dies auch nach Abschluss der Abbautätigkeit wieder tun.

Temporäre (10+ Jahre) Zerstörung der Vegetationsdecke

Siehe "Starke Veränderung der lokalen Lebensraumbedingungen".

Temporäre Mehrbelastung durch Schadstoffemissionen, Lärm und Staubentwicklung

Wenngleich die Akustische Bewertung aufzeigt, dass die Grenzwerte für die akustische Belastung der nächsten Wohnhäuser unterschritten werden, kann angenommen werden, dass eine gewisse akustische Belastung für die Anrainer besteht. Allerdings unterscheidet sich der entstehende Lärmpegel kaum von jenem der in der Nähe liegenden Staatsstraße SS44 St.Leonhard-Meran. Das Lärmempfinden im gegenständlichen Kontext ist demnach mitunter auch eine individuelle Angelegenheit, welche mit der persönlichen Reizschwelle der betroffenen Personen korreliert.

Die zusätzliche Schadstoffemission durch die Anwesenheit der Abbau- und Transportmaschinen wirkt sich negativ auf die atmosphärischen Bedingungen aus, bleibt aber in Bezug auf den bereits jahrelang betriebenen Abbau gleich, bzw. verbessert sich durch den Einsatz modernerer, schadstoffärmerer Maschinen.

Der Staubentwicklung wird durch Sprenkelanlagen entlang des Zufahrtsweges entgegengewirkt, wobei eine Besprenkelung der gesamten Grubenfläche weder umsetzbar noch zielführend ist. Eine Zunahme der Staubbelastung für den Abbauzeitraum muss dennoch weiterhin als möglich in Betracht gezogen werden, wobei auch diese Belastung bereits jahrelang existiert und noch zu keinerlei Beanstandungen geführt hat.

10.4 Wahrscheinlichkeit von Auswirkungen

Alle vorab angeführten Auswirkungen müssen hinsichtlich ihrer Eintrittswahrscheinlichkeit mit den Attributen wahrscheinlich bis sehr wahrscheinlich charakterisiert werden. Auswirkungen deren Auftreten als unwahrscheinlich gilt, wurden nicht berücksichtigt.

10.5 Von den Auswirkungen betroffene Personen

Auf Grund der isolierten Position der Schottergrube sind keinerlei Personen von den Auswirkungen des Projekts betroffen.

10.6 Erwarteter Eintrittszeitpunkt, Dauer, Häufigkeit und Reversibilität der Auswirkungen

Die vorab beschriebenen Auswirkungen können im Hinblick auf Eintrittszeitpunkt, Dauer, Häufigkeit und Reversibilität unterschieden werden.

Auswirkung	Erw. Eintrittszeitpunkt	Dauer	Häufigkeit	Reversibilität
Starke Veränderung der lokalen Lebensraumbedingungen	Beginn Abbauphase	10+ Jahre	Einmalig	Ja
Temporäre Zerstörung der Vegetationsdecke Temporäre Mehrbelastung o Schadstoffemissionen, Lärm		10+ Jahre	Einmalig	Ja
und Staubentwicklung	1			

10.7 MÖGLICHKEIT DIE AUSWIRKUNGEN WIRKSAM ZU VERRINGERN

Um die Tragweite der beschriebenen Auswirkungen so gering als möglich zu halten, können verschiedene mildernde Maßnahmen getroffen werden.

Boden und Untergrund

- Bei der Erstellung von provisorischen Zufahrtsstraßen muss am Ende der Arbeiten der ursprüngliche Zustand wiederhergestellt werden
- Die Geländeoberfläche muss nach der Beendigung des Schotterabbaues wieder in den Ausgangszustand rückgeführt werden

Flora

• Die örtliche Humusschicht muss in angemessener Weise wieder aufgetragen werden, um den neuerlichen Bewuchs der Flächen in der bisherigen Art und Weise zu gewährleisten.

Fauna

Es sind keine Milderungsmaßnahmen aus dem Bereich Fauna vorgesehen. Die Tiere sind mobil und können im Zeitpunkt der Bearbeitung leicht ausweichen und nach Abschluss der Arbeiten ihren Lebensraum wieder leicht besiedeln.

Landschaft

• Der Grubenrand soll mit einem Zaun und einen Erddamm abgegrenzt werden. Der Erddamm soll gleich nach seiner Errichtung begrünt werden. Als Zaun ist ein verzinkter Maschendrahtzaun mit Holzstehern vorgesehen. Kunststoffzäune in grellen oder unpassenden Farben sollen vermieden werden.

11. Ausgleichsmaßnamen

Zur Kompensation der durch das Vorhaben beanspruchten Flächen ist die Umsetzung entsprechend dimensionierter, ökologische relevanter Ausgleichsmaßnahmen vorgesehen. Nachfolgend werden die Maßnahmen im ökologischen Kontext beschrieben. Folgende Maßnahmen wurden zur Umsetzung ausgewählt:

11.1 Wiederherstellung des betroffenen Gebiets

Nach dem Abschluss der Abbauarbeiten soll das zu dieser Zeit noch offene Grubenareal samt Zufahrtsbereich mit Aushubmateriel aufgefüllt werden. Die Oberfläche soll mit Humus abgedeckt und mit Samen für Futterwiesen begrünt werden. Die Abgrenzungszäune sollen entfernt werden.

11.2 Schaffung von Lebensräumen für Kleinstlebewesen

Die Auffüllung der Grube, sowie die Begrünungsarbeiten werden gleichzeitig mit dem Abbau vorgenommen, liegen räumlich aber immer etwas hinter der Abbaufläche. Somit kann bereits während der Abbautätigkeit auf den wieder aufgefüllten Flächen der heutige Lebensraum für Kleinlebewesen wie Mäuse, Maulwürfe usw. oder Insekten wieder hergestellt werden.

11.3 Umweltausgleichsmaßnahmen der Gemeinde St.Leonhard

Auf der Ostseite der Grube auf der G.P.3595/2 befindet sich der Gandellenweg mit teilweise beidseitig frei stehenden Trockenmauern und Nussbäumen. Zudem befindet sich ein Feuchtgebiet in der Nähe des bereits abgebauten und wieder aufgefüllten Teil der Grube. Der anfallende Betrag für Ausgleismaßnahmen wird jährlich von der Gemeinde für die Instandhaltung dieser beiden Lebensräume eingesetzt.

Die Trockenmauern beim Gandellenweg bewegen sich auf Grund des Frostes und der darunter liegenden Baumwurzeln und fallen teilweise in die angrenzenden Wiesen. So ist es immer wieder notwendig Reparaturarbeiten am Mauerwerk durchzuführen.

Das in der Nähe liegende Feuchtgebiet muss ab und zu gesäubert und der Teich frei gelegt werden.

Sollten finanzielle Mittel übrig bleiben, so sollen diese für die Instandhaltung der umliegenden Trockenmauern entlang der bestehenden Wanderwege eingesetzt werden.

Zur Verfügung stehende Mittel für Umweltausgleichsmaßnahmen:

399.36 m³*0,5€* *0,51 =101.779€ auf 10 Jahre = **10.177€ pro Jahr** für Ausgleismaßnahmen

Bei einen geplanten Abbau von 39.936m³ pro Jahr werden jährlich von der Gemeinde 10.177€ (das sind 51 Prozent des eingezahlten Betrages bei der Gemeinde) in Ausgleismaßnahmen wie unter 11.3 beschrieben investiert.

12 SCHLUSSFOLGERUNG

Zusammenfassend kann ausgesagt werden,

• dass die bestehende Schottergrube auf den Gandellen erweitert werden kann,

- dass der derzeitige Futterwiesenbereich zwischenzeitlich zerstört wird,
- dass die Abbauflächen innerhalb eines kurzen Zeitinterwalles wieder aufgefüllt werden,
- dass der aufgefüllte Bereich einmal jährlich begrünt wird
- dass es sich bei der betroffene Flächen nicht um besonders ökologisch wertvolle oder geschützte Lebensräume gemäß den geltenden Gesetzten und Bestimmungen handelt,
- dass der Ausgangszustand nach Erschöpfung des Abbaus wieder hergestellt wird,
- dass es durch den seitlichen Erddamm kaum einsehbare Bereich in die Grube gibt und es daher keine erhebliche und nur temporäre landschaftliche Beeinträchtigung gibt,

In Summe ergeben sich für den Zeitraum des Abbaus erhebliche Veränderungen im Vergleich zum Ist-Zustand. Langfristig ändert sich an den lokalen Gegebenheiten aber nichts. Die als Lebensräume wertvollen Flächen werden faktisch wieder in den Ausgangszustand rückgeführt. In diesem Sinne kann der geplante Eingriff aus ökologischer-, bzw. landschaftsökologischer Sicht gutgeheißen werden.

Der Techniker: Geom.Rudolf Schaffler