ID TRINCEA	T67	T66	T65	T65	T61	T50	T60	T59	T81	T96	T92	T94	T93	T86	T91	DGP 102 del	09/02/2021
PROFONDITA'	-2,9/-3,3 m				-1,1/-1,5 m		-1,0/-1,8 m	-0,8/-1,5 m	-2,0 m		-0,5/-2,0 m	-1,65/-2,3 m					
																Col. A	Col. B
%			-	The state of the s				•	•	-							
70	75,5	00,1	04,1	03,2	74,5	07,5	34,0	34,2	00,2	00,2	37,2	77,2	07,2	03,0	02,2		
mg/Kg s.s.	0,6	0,5	2,9	0,8	0,6	5,1	3,5	1,2	1,1	1,2	2,2	1,1	0,8	0,9	2,2	10	30
mg/Kg s.s.	5,9	7,6	41,2	19,4	11,4	16,1	17,6	7,7	12,1	12,8	15,7	15,3	11,9	17,6	13,2	20	50
mg/Kg s.s.	1,0	1,1	3,9	1,1	1,0	1,1	1,3	1,3	1,2	1,1	1,1	1,1	1,5	1,2	1,1	2	10
mg/Kg s.s.	0,1	0,2	0,1	0,2	0,2	0,3	0,2	0,2	0,2	0,4	0,5	0,1	0,2	0,1	0,3	2	15
mg/Kg s.s.	6,8	6,0	17,1	6,8	6,6	6,9	6,7	7,1	7,2	7,4	7,9	6,6	6,4	6,3	7,6	20	250
mg/Kg s.s.		15,3	26,4	18,2	17,4	17,2	17,5	17,6	15,2	16,7	18,4	14,3	12,0	13,5	16,2	150	800
																	15
																	5
		· ·	•				The state of the s		•	The state of the s	· ·	•	· ·				500
				· ·	· ·	•			•	-					•		1000 600
				· ·	*			-	-	-	-		·		•		15
		· ·	·	•	· ·	•	The state of the s	•	•	The state of the s	· ·	-	· ·		•	_	350
				•			-	· ·	•		· ·					1	10
					· ·			· ·		The state of the s			· ·	The state of the s	•	90	250
mg/Kg s.s.	61,7	71,3	48,4	82,5	88,7	100,7	87,0	73,6	130,4	111,4	152,9	68,0	69,3	64,7	112,5	150	1500
	•																
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	2
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	50
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	50
mg/Kg s.s.			< 0.01	< 0.01	< 0.01	< 0.01			< 0.01	< 0.01	< 0.01	< 0.01				0,5	50
					< 0.01												
																0.5	50
																	50
mg/kg s.s.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1,0	100
ma/Kass	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.12	0.00	0.00	0.04	2.86	0.48	< 0.03	< 0.03	< 0.03	< 0.03	0.5	10
					l			The state of the s	•							i i	10
								•			·						10
						•	· ·	-	-		-						10
																	10
mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,19	0,16	0,28	0,07	3,36	0,61	< 0.03	< 0.03	< 0.03	< 0.03	5	50
mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,04	< 0.03	< 0.03	< 0.03	0,05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,24	0,05	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,03	< 0.03	< 0.03	< 0.03	0,15	0,06	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
																	10
					l l	•										-	5
											-					_	50
mg/kg s.s.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1,3	0,8	1,1	0,3	18,6	3,5	< 0.1	< 0.1	< 0.1	< 0.1	10	100
ma/Kass	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	5
																-	5
																-	5
	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0,01	0,1
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,2	5
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	1
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	10
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	20
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	30
					< 0.01					< 0.01							15 50
																	50
																	5 15
																	15 1
																The state of the s	10
1116/116 3.3.	· 0.01	` 0.01	` 0.01	` 0.01	. 0.01	. 0.01	` 0.01	. 0.01	. 0.01	\ 0.01	` 0.01	. 0.01	. 0.01	\ 0.01	. 0.01	0,5	10
mg/Kg s.s	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.5	10
			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	0,01	0,1
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	10
mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	10
mg/Kg s.s.	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0,06	5
mg/Kg s.s.	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	10	250
mg/Kg s.s.	< 10	< 10	< 10	< 10	< 10	165	42	76	25	68	47	15	< 10	< 10	11	50	750
	PROFONDITA' U.d.M. % % mg/Kg s.s.	PROFONDITA' -2,9/-3,3 m U.d.M. 21LA03935 % 95,5 % 75,3 mg/kg s.s. 0,6 mg/kg s.s. 5,9 mg/kg s.s. 1,0 mg/kg s.s. 0,1 mg/kg s.s. 1,0 mg/kg s.s. 0,1 mg/kg s.s. 1,2 mg/kg s.s. 23,7 mg/kg s.s. 11,2 mg/kg s.s. 10,0 mg/kg s.s. 10,0	PROFONDITA' -2,9/-3,3 m -2,6/-2,9 m	PROFONDITA' -2,9/-3,3 m -2,6/-2,9 m 0,0/-0,4 m U.d.M. 211A03935 211A03936 211A03937 % 95,5 98,8 74,0 66,1 64,1 mg/kg s.s. 0,6 0,5 2,9 mg/kg s.s. 1,0 1,1 3,9 mg/kg s.s. 18,9 15,3 26,4 mg/kg s.s. 18,9 15,3 26,4 mg/kg s.s. 18,9 15,3 26,4 mg/kg s.s. 10,0 1,0 0,1 0,1 mg/kg s.s. 11,2 8,1 40,4 mg/kg s.s. 11,2 8,1 40,4 mg/kg s.s. 11,2 8,1 40,4 mg/kg s.s. 11,7 1,7 4,3 mg/kg s.s. 1,7 1,7 4,3 mg/kg s.s. 1,7 1,7 4,3 mg/kg s.s. 0,2 0,2 0,4 mg/kg s.s. 0,2 0,2 0,4 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,0 1 0,0 1 0,0 1 mg/kg s.s. 0,0 1 0,	PROFONDITA	PROFENDITA' 2,14,3,3 m 2,6/2,9 m 0,0/0,4 m 0,6/1,5 m -1,1/1,5 m 1,1/1,5 m					Mart Mart						

	ID TRINCEA	T69	T71	T72	T73	T74	T75	T76	T76	T85	T88	T56	T57	T58	T82	T83	T84	DCB 102 dal	00/02/2021
	PROFONDITA'	-2,6 m	-2,7 m	-2,1/-2,6 m	-2,7 m	-1,8 m	-1,2 m	-1,1/-1,5 m	-1,5 m	-1,2 m	-1.0 m	-0,2/-0,5 m	-0,3/-0,6 m	-0,3/-0,6 m	-0,5/-1,0 m	-0,4/-1,3 m	-0,8/-1,4 m	DGP 102 del	
PARAMETRI Residuo secco 105°C	U.d.M.	21LA04242 99,6	21LA04243 99,6	21LA04244 98,8	21LA04246 99,7	21LA04247 98,8	21LA04248 99,2	21LA04249 96,8	21LA04250 99,5	21LA04251 99,2	21LA04252 99,0	21LA04355 99,7	21LA04356 99,7	21LA04357 99,9	21LA04358 99,5	21LA04359 99,5	21LA04360 99,2	Col. A	Col. B
Frazione granulometrica < 2 mm	% %	99,6 37,7	83,9	55,7	56,2	98,8 67,0	99,2 66,8	91,2	99,5 53,5	99,2 66,1	99,0 69,3	66,3	99,7 72,1	69,7	99,5 67,3	99,5 71,6	71,4		
Composti inorganici:		,	'				•		- ,	,	,	·	,	•	· [ŕ			
Antimonio	mg/Kg s.s.	0,5	0,3	0,4	0,2	0,6	0,4	1,0	0,3	1,3	2,0	0,7	1,4	1,0	1,0	0,5	1,4	10	30
Arsenico	mg/Kg s.s.	4,1	7,2	6,3	3,9	7,6	5,7	11,8	4,9	9,4	14,4	6,1	13,5	6,7	20,2	10,3	12,0	20	50
Berillio Cadmin	mg/Kg s.s.	0,5	0,5	0,5	0,3	0,6	0,9	0,9	0,3	1,2	1,2	1,0	1,0	1,0	0,8	0,9	1,0	2	10
Cadmio Cobalto	mg/Kg s.s. mg/Kg s.s.	0,2 8,0	0,2 8,8	0,4 9,2	0,2 8,5	0,5 12,3	0,2 8,1	0,8 14,6	0,3 9,4	0,2 7,2	0,2 6,4	0,2 5,3	0,1 6,1	< 0.1 5,2	0,1 6,2	< 0.1 6,2	< 0.1 4,8	2 20	15 250
Cromo totale	mg/Kg s.s.	19,5	19,2	24,0	24,0	32,5	20,3	35,7	9,4 25,9	7,2 14,2	15,5	14,0	15,2	17,3	14,1	15,3	12,6	150	800
Cromo esavalente (VI)	mg/Kg s.s.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2	15
Mercurio	mg/Kg s.s.	< 0.1	< 0.1	0,1	< 0.1	< 0.1	< 0.1	0,2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1	5
Nichel	mg/Kg s.s.	20,7	20,0	22,9	24,3	30,8	16,5	31,6	25,9	8,3	7,4	6,5	6,8	6,2	6,4	6,7	5,9	120	500
Piombo	mg/Kg s.s.	49,4 15.7	18,3	40,1	11,9	52,6	27,5	102,3	24,9	28,5	36,3	42,8	40,3	29,6	25,0	24,7	35,5	100	1000
Rame Selenio	mg/Kg s.s. mg/Kg s.s.	15,7 < 1.5	13,3 < 1.5	25,9 < 1.5	14,7 < 1.5	23,3 < 1.5	15,7 1,7	51,2 1,9	16,8 < 1.5	16,0 1,9	17,1 2,0	12,5 2,0	19,5 2,1	13,4 2,0	14,3 < 1.5	12,6 1,7	9,6 1,7	120 3	600 15
Stagno	mg/Kg s.s.	47,8	2,7	6,2	4,5	5,7	9,8	9,1	16,1	6,3	2,0 9,6	2,0 14,8	13,7	2,0 8,4	8,1	1,7 9,5	20,2	20	350
Tallio	mg/Kg s.s.	0,2	0,1	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	1	10
Vanadio	mg/Kg s.s.	25,7	24,6	27,6	24,2	37,5	28,4	46,6	29,3	34,0	30,9	30,2	36,1	33,0	35,7	34,1	28,0	90	250
Zinco	mg/Kg s.s.	43,6	65,3	103,8	51,5	122,9	78,6	228,1	68,9	55,8	74,6	44,3	55,9	39,8	51,7	32,8	33,0	150	1500
Composti organici aromatici:		· O O1	10.01	10.01	. 0.01	10.01	. 0.01	10.01	- 0.01	- 0.01	10.01	- 0.01	r O O1	* 0.01	10.01	. 0.01	10.01	0.1	
Benzene Etilbenzene	mg/Kg s.s. mg/Kg s.s.	< 0.01 < 0.01	0,1 0,5	2 50															
Stirene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	50
Toluene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	50
m-xilene + p-xilene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
o-xilene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	_	
Xileni totali	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	50
Sommatoria organici aromatici Idrocarburi policiclici aromatici:	mg/Kg s.s.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1,0	100
Benzo(a)antracene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,5	10
Benzo(a)pirene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Benzo(b)fluorantene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,5	10
Benzo(k)fluorantene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,5	10
Benzo(g,h,i)perilene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Crisene Dibenzo(a,e)pirene	mg/Kg s.s. mg/Kg s.s.	< 0.03 < 0.03	0,10 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	5 0,1	50 10								
Dibenzo(a,l)pirene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Dibenzo(a,i)pirene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Dibenzo(a,h)pirene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Dibenzo(a,h)antracene	mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,1	10
Indeno(1,2,3-cd)pirene Pirene	mg/Kg s.s.	< 0.03 < 0.03	< 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03	0,1 5	5								
Sommatoria policiclici aromatici	mg/Kg s.s. mg/Kg s.s.	< 0.03	< 0.03	< 0.03	< 0.03	< 0.1	< 0.03	< 0.03	< 0.03	< 0.03	0,14 0,4	< 0.03	< 0.1	< 0.03	< 0.03	< 0.03	< 0.03 < 0.1	5 10	50 100
Alifatici clorurati cancerogeni:	6,	. 0.1	10.12		1	1	. 0.1		. 0.12	70.12	5, .	. 0.1	. 0.2	70.2		70.2			
Clorometano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	5
Diclorometano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	5
Triclorometano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	5
Cloruro di vinile 1,2-dicloroetano	mg/Kg s.s. mg/Kg s.s.	< 0.005 < 0.01	0,01 0,2	0,1 5															
1,1-dicloroetilene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	1
Tricloroetilene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	10
Tetracloroetilene	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	20
Alifatici clorurati non cancerogeni:	11.6			1					0.04	0.04	0.01			0.04	0.04	0.04			
1,1-dicloroetano	mg/Kg s.s. mg/Kg s.s.	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	0,5 0,3	30 15
1,2-dicloroetilene 1,1,1-tricloroetano	mg/Kg s.s.	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	0,5	50
1,2-dicloropropano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,3	5
1,1,2-tricloroetano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	15
1,2,3-tricloropropano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,1	1
1,1,2,2-tetracloroetano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	10
Alifatici alogenati cancerogeni:	ma///a.s.s	< 0.01	40.01	z 0.01	< 0.01	40.01	< 0.01	40.01	4 0 01	4 O O1	4 0 01	4 0 01	z 0.01	z O O1	z 0.01	z 0.01	4 O O1	0.5	10
Tribromometano (bromoformio) 1,2-dibromoetano	mg/Kg s.s. mg/Kg s.s.	< 0.01 < 0.005	0,5 0,01	10 0,1															
Dibromoclorometano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.003	< 0.01	< 0.01	< 0.01	< 0.01	< 0.003	< 0.01	< 0.01	0,5	10
Bromodiclorometano	mg/Kg s.s.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,5	10
Policlorobifenili:					Į l														
Policlorobifenili (PCB)	mg/Kg s.s.	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0,06	5
Idrocarburi: Idrocarburi leggeri (C5-C12)	ma/Vaca	~ 3 O	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	/ 3 N	~ 3 O	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	10	250
Idrocarburi leggeri (C5-C12)	mg/Kg s.s. mg/Kg s.s.	< 3.0 < 10	< 3.0 < 10	< 3.0 < 10	< 3.0 99	< 3.0 < 10	< 3.0 < 10	13	< 3.0 < 10	< 3.0 < 10	< 3.0 16	< 3.0 < 10	< 3.0 17	< 3.0 < 10	< 3.0 < 10	< 3.0 < 10	< 3.0 < 10	10 50	750
idiocarban pesanti (C15-C40)	111g/ Ng 3.3.	\10	\10	<u> </u>	33	<u> </u>	\10	13	\ 10	\ 10	10	\10	1/	\10	\ 10	\ 10	< 10	30	730

	ID TRINCEA	T73 (puntuale)	DGP 102 del	09/02/2021
	PROFONDITA'	-2,0/-2,5 m		
PARAMETRI	U.d.M.	21LA04245	Col. A	Col. B
Residuo secco 105°C	%	99,0		
Frazione granulometrica < 2 mm	%	99,0		
Composti organici aromatici:				
Benzene	mg/Kg s.s.	< 0.01	0,1	2
Etilbenzene	mg/Kg s.s.	< 0.01	0,5	50
Stirene	mg/Kg s.s.	< 0.01	0,5	50
Toluene	mg/Kg s.s.	< 0.01	0,5	50
m-xilene + p-xilene	mg/Kg s.s.	< 0.01		
o-xilene	mg/Kg s.s.	< 0.01		
Xileni totali	mg/Kg s.s.	< 0.01	0,5	50
Sommatoria organici aromatici	mg/Kg s.s.	< 0.1	1,0	100
Idrocarburi policiclici aromatici:				
Benzo(a)antracene	mg/Kg s.s.	0,07	0,5	10
Benzo(a)pirene	mg/Kg s.s.	< 0.03	0,1	10
Benzo(b)fluorantene	mg/Kg s.s.	< 0.03	0,5	10
Benzo(k)fluorantene	mg/Kg s.s.	< 0.03	0,5	10
Benzo(g,h,i)perilene	mg/Kg s.s.	< 0.03	0,1	10
Crisene	mg/Kg s.s.	0,35	5	50
Dibenzo(a,e)pirene	mg/Kg s.s.	< 0.03	0,1	10
Dibenzo(a,l)pirene	mg/Kg s.s.	< 0.03	0,1	10
Dibenzo(a,i)pirene	mg/Kg s.s.	< 0.03	0,1	10
Dibenzo(a,h)pirene	mg/Kg s.s.	< 0.03	0,1	10
Dibenzo(a,h)antracene	mg/Kg s.s.	< 0.03	0,1	10
Indeno(1,2,3-cd)pirene	mg/Kg s.s.	< 0.03	0,1	5
Pirene	mg/Kg s.s.	0,45	5	50
Sommatoria policiclici aromatici	mg/Kg s.s.	0,9	10	100
Idrocarburi:				
Idrocarburi leggeri (C5-C12)	mg/Kg s.s.	542	10	250
Idrocarburi pesanti (C13-C40)	mg/Kg s.s.	19047	50	750

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03935

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T67 - Profondità -2,9/-3,3 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T67

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	95,5			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	75,3			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,6	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,9	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	19/10/2021 21/10/2021

mg/Kg s.s.

mg/Kg s.s.

0,1

6,8

≤2

≤20

≤15

≤250

Pagina 1 di 5

19/10/2021

21/10/2021

19/10/2021 21/10/2021

Cadmio

Cobalto

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

segue Certificato di Analisi n' 21LA03935					
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,9	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI)	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021

EPA 3051A 2007 + EPA 6020B 2014	ilig/kg 5.5.	10,9	≥150	≥000	21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	11,2	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	23,7	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	10,0	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,7	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	3,5	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	27,8	≤90	≤250	19/10/2021 21/10/2021
Z inco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	61,7	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 19/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue Certificato di Analisi n' 21LA03935	seaue	Certificato	di Analisi n'	²¹	LA03935
---	-------	-------------	---------------	---------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 21/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 21/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 19/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 19/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 19/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 19/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 19/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 19/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 19/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 19/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045795 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045795

data di emissione 22/10/2021

Spett.le Codice intestatario 16647

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

21-099504-0001 Numero di accettazione Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione **CAMPIONE SIGLATO 21LA03935**

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

segue rapporto di prova n. RP-ENV-21/000045795

RISULTATI ANALITICI								
	Valore/ Incertezza	U.M.	RL R	2% Data inizio fine analisi	Unità op.			
Sul campione tal quale								
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B								
Amianto	<81	mg/kg	81	22/10/2021 22/10/2021	RES			

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03935

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scossiamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03936

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T66 - Profondità -2,6/-2,9 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T66

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C	%	98,8		19/10/2021
CNR IRSA 2 Q.64 Vol.2 1984				19/10/2021
F ' 1 1' 0	0/			

 Frazione granulometrica < 2 mm</td>
 %
 66,1
 19/10/2021

 Metodo interno
 19/10/2021

Composti inorg	anıcı:
----------------	--------

Antimonio	mg/Kg s.s.	0,5	≤10	≤30	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014					21/10/2021
Arsenico	mg/Kg s.s.	7,6	≤20	≤50	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014					21/10/2021
Berillio	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014					21/10/2021
Cadmio	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014					21/10/2021
Cobalto	mg/Kg s.s.	6,0	≤20	≤250	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014					21/10/2021

Pagina 1 di 5

studio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,3	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,1	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	21,6	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,8	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,7	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	3,2	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	29,1	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	71,3	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 19/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
Xileni totali	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021

< 0,1

mg/Kg s.s.

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

19/10/2021

18/10/2021

19/10/2021

≤100

segue Certificato	di Analisi n' 21	LA03936
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 21/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 21/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 19/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 19/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 19/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 19/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 19/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 19/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 19/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 19/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045796 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045796

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0002 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03936

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

22/10/2021

segue rapporto di prova n. RP-ENV-21/000045796

RISULTATI ANALITICI									
	Valore/ Incertezza	U.M.	RL	R% Data fine a		Unità op.			
Sul campione tal quale									
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B									
Amianto	<81	mg/kg	81	22/10	/2021	RES			

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03936

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03937

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T65 - Profondità 0,0/-0,4 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T65

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Parametro

Note al campionamento: Verbale di campionamento 21-001367

Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C	%	74,0		19/10/2021
CNR IRSA 2 Q.64 Vol.2 1984				19/10/2021
Frazione granulometrica < 2 mm	%	64,1		19/10/2021
Metodo interno				19/10/2021
Composti inorganici:				
Antimonio	mg/Kg s.s.	2,9	≤10 ≤30	19/10/2021
EPA 3051A 2007 + EPA 6020B 2014				21/10/2021
Arsenico	mg/Kg s.s. ▶	41,2	≤20 ≤50	19/10/2021
EDA 005/4 0005 EDA 0000D 00/4				24/40/2024

EPA 3051A 2007 + EPA 6020B 2014	3 3 4 4	,			21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	3,9	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,1	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

Data inizia analiai

EPA 3051A 2007 + EPA 6020B 2014

Selenio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	26,4	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	40,4	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	10,7	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	111,7	≤120	≤600	19/10/2021 21/10/2021

mg/Kg s.s. ▶

4,3

≤3

≤15

19/10/2021 21/10/2021

Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	3,2	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,4	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	96,9	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	48,4	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021

mg/Kg s.s.

< 0,1

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

18/10/2021 21/10/2021

≤100

seque Ce	ertificato d	i Analisi n'	21L	A03937
----------	--------------	--------------	-----	--------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 21/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 21/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 21/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 21/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 21/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045797 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045797

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0003 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03937

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

segue rapporto di prova n. RP-ENV-21/000045797

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL R	Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	22/10/2021 22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03937

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare I intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03938

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T65 - Profondità -0,6/-1,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T65

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	95,1			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	65,2			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,8	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	19,4	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021 21/10/2021
Cadmio	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021

mg/Kg s.s.

6,8

≤20

≤250

Pagina 1 di 5

21/10/2021

19/10/2021 21/10/2021

Cobalto

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

Data inizio analisi

segue Certificato di Analisi n' 21LA03938				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2
Cromo totale	ma/Ka s s	18.2	<150	<800

Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2		Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,2	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,0	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	29,2	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,8	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,1	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	4,2	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	38,3	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	82,5	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene <i>EPA 5021A 2014 + EPA 8260C 2006</i>	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque	Certificato	di Analisi n'	21LA03938
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045798 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

LAB N° 0051 L

RAPPORTO DI PROVA RP-ENV-21/000045798

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0004 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03938

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

22/10/2021

segue rapporto di prova n. RP-ENV-21/000045798

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL F	R% Data inizio fine analisi	Unità op.		
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B							
Amianto	<81	mg/kg	81	22/10/2021	RES		

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03938

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03939

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T61 - Profondità -1,1/-1,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T61

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	96,9		19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	74,5		19/10/2021 19/10/2021
Composti inorganici:				
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,6	≤10 ≤30	19/10/2021 21/10/2021

Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	11,4	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,6	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

studio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,4	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,1	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,5	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,2	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,8	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	3,5	≤20	≤350	19/10/2021 21/10/2021
Tallio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	32,3	≤90	≤250	19/10/2021 21/10/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	88,7	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 19/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Toluene	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

< 0,01

< 0,01

< 0,01

< 0,1

≤0,5

≤1

≤50

≤100

EPA 5021A 2014 + EPA 8260C 2006 Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

m-xilene + p-xilene

o-xilene

Xileni totali

Pagina 2 di 5

19/10/2021

18/10/2021

19/10/2021

18/10/2021

19/10/2021

18/10/2021

19/10/2021

18/10/2021

19/10/2021

segue Certificato	odi Analisi n° 21	LA03939
-------------------	--------------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 19/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 19/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 19/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 19/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 19/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 19/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 19/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 19/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045799 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045799

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0005 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03939

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

22/10/2021

segue rapporto di prova n. RP-ENV-21/000045799

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL F	R% Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03939

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03940

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T50 - Profondità -1,35/-2,0 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T50

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	95,0		19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	67,9		19/10/2021 19/10/2021
Composti inorganici:				
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,1	≤10 ≤30	19/10/2021 21/10/2021

Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	16,1	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,9	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

≤250

≤1500

≤2

≤50

19/10/2021 21/10/2021

19/10/2021

21/10/2021

18/10/2021

19/10/2021

18/10/2021

≤90

≤150

≤0,1

≤0,5

segue Certificato di Analisi n' 21LA03940

Vanadio

Zinco

Benzene

Etilbenzene

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,2	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,4	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	68,8	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	36,5	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,6	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	11,8	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

35,3

100,7

< 0,01

< 0,01

Composti organici aromatici:

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
EPA 5021A 2014 + EPA 8260C 2006	mg/kg 5.5.	\ 0,01	=0,0	_00	19/10/2021

EPA 5021A 2014 + EPA 8260C 2006 Idrocarburi policiclici aromatici:

domicilio fiscale

Pagina 2 di 5

19/10/2021

seque (Certificato	di Analisi n'	21LA03940
---------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,13	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,13	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,14	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,06	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,11	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,19	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,04	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,05	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,12	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,31	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	1,3	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 19/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 19/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 19/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 19/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 19/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 19/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 19/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 19/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s. ▶	165	≤50	≤750	19/10/2021 22/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03940

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045800 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045800

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0006 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03940

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

22/10/2021

segue rapporto di prova n. RP-ENV-21/000045800

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03940

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare I intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03941

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T60 - Profondità -1,0/-1,8 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T60

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	98,0		18/10/2021 18/10/2021

Frazione granulometrica < 2 mm	%	54,6	18/10/2021 18/10/2021
Metodo interno			16/10/2021

Composti inorganici:				
Antimonio	mg/Kg s.s.	3,5	≤10	≤30

EPA 3051A 2007 + EPA 6020B 2014					21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,6	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,3	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021 21/10/2021
Cobalto	mg/Kg s.s.	6,7	≤20	≤250	19/10/2021

Pagina 1 di 5

studio

21/10/2021

19/10/2021

EPA 3051A 2007 + EPA 6020B 2014

segue (Certificato	di Analisi ı	n' 21LA	03941

U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
mg/Kg s.s.	17,5	≤150	≤800	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
mg/Kg s.s.	9,6	≤120	≤500	19/10/2021 21/10/2021
mg/Kg s.s.	36,8	≤100	≤1000	19/10/2021 21/10/2021
mg/Kg s.s.	20,2	≤120	≤600	19/10/2021 21/10/2021
mg/Kg s.s.	1,8	≤3	≤15	19/10/2021 21/10/2021
mg/Kg s.s.	14,8	≤20	≤350	19/10/2021 21/10/2021
mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
mg/Kg s.s.	33,9	≤90	≤250	19/10/2021 21/10/2021
mg/Kg s.s.	87,0	≤150	≤1500	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01			18/10/2021 19/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 19/10/2021
	mg/Kg s.s.	mg/Kg s.s. 17,5 mg/Kg s.s. < 0,1	mg/Kg s.s. 17,5 ≤150 mg/Kg s.s. < 0,1	mg/Kg s.s. 17,5 ≤150 ≤800 mg/Kg s.s. < 0,1

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque Certificato di	Analisi n° 21L	A03941
----------------------	----------------	--------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,09	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,07	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,13	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,05	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,05	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,16	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,05	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,22	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,8	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 19/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 19/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 19/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 19/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 19/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 19/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 19/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 19/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 19/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 19/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 19/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 19/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 19/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	42	≤50	≤750	19/10/2021 22/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03941

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045801 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045801

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0007 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03941

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

segue rapporto di prova n. RP-ENV-21/000045801

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL R	Data inizio fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B					
Amianto	<81	mg/kg	81	22/10/2021 22/10/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03941

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scossamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otnenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03942

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T59 - Profondità -0,8/-1,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T59

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	98,3		19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	54,2		19/10/2021 19/10/2021
Composti inorganici:				
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤10 ≤30	19/10/2021 21/10/2021
Arsenico	mg/Kg s.s.	7,7	≤20 ≤50	19/10/2021

EPA 3051A 2007 + EPA 6020B 2014		ŕ			21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,3	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,1	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

segue Certificato di Analisi n' 21LA03942

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,6	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	10,3	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,3	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	19,0	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,7	≤3	≤15	19/10/2021 21/10/2021
Stagno <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	5,3	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	32,5	≤90	≤250	19/10/2021 21/10/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	73,6	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021
11					

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque Certifica	ato di Analisi n'	21LA03942
-----------------	-------------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,09	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,07	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,19	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,08	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,06	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,28	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,34	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	1,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s. ▶	76	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03942

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045802 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045802

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0008 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03942

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

segue rapporto di prova n. RP-ENV-21/000045802

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL R	2% Data inizio fine analisi	Unità op.		
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B							
Amianto	<81	mg/kg	81	22/10/2021 22/10/2021	RES		

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03942

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03943

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T81 - Profondità F.S. -2,0 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T81

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

<u>RISU</u>	<u>LIAI</u>	<u>I ANAL</u>	<u>.111Cl</u>

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	97,7			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	66,2			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,1	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,2	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

Data inizio analisi

segue Certificato di Analisi n' 21LA03943				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2
Cromo totale	ma/Ka s s	15.2	<150	<800

EPA 3051A 2007 + EPA 6020B 2014 Crome assavlente (VI) Mercurio EPA 3051A 2007 + EPA 6020B 2014 Michel Michel EPA 3051A 2007 + EPA 6020B 2014 Michel Michel EPA 3051A 2007 + EPA 6020B 2014 Michel Michel	Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
## Mercurio		mg/Kg s.s.	15,2	≤150	≤800	19/10/2021 21/10/2021
EPA 3051A 2007 + EPA 6020B 2014 mg/Kg s.s. 9,0 \$120 \$500 19/10/202	` '	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Piombo		mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
### ##################################		mg/Kg s.s.	9,0	≤120	≤500	19/10/2021 21/10/2021
Selenio		mg/Kg s.s.	36,1	≤100	≤1000	19/10/2021 21/10/2021
Stagno		mg/Kg s.s.	24,2	≤120	≤600	19/10/2021 21/10/2021
Tallio		mg/Kg s.s.	1,7	≤3	≤15	19/10/2021 21/10/2021
EPA 3051A 2007 + EPA 6020B 2014 mg/Kg s.s. 35,5 ≤90 ≤250 19/10/202 21	· ·	mg/Kg s.s.	8,6	≤20	≤350	19/10/2021 21/10/2021
Zil/10/202 Zinco		mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
EPA 3051A 2007 + EPA 6020B 2014 21/10/202 Composti organici aromatici: Benzene mg/Kg s.s. < 0,01 ≤0,1 ≤2 18/10/202 21/10/202 Etilbenzene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 Etrene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 Stirene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 Toluene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 m-xilene + p-xilene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 o-xilene mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 Xileni totali mg/Kg s.s. < 0,01 ≤0,5 ≤50 18/10/202 21/10/202 Sommatoria organici aromatici (da 19 a 23) mg/Kg s.s. < 0,01 ≤1 ≤1 ≤100 18/10/202		mg/Kg s.s.	35,5	≤90	≤250	19/10/2021 21/10/2021
Benzene		mg/Kg s.s.	130,4	≤150	≤1500	19/10/2021 21/10/2021
Etilbenzene Etilbenzene EpA 5021A 2014 + EPA 8260C 2006 Etilbenzene mg/Kg s.s. < 0,01 ≤ 0,5 ≤ 50 18/10/202 21/10/202 Stirene mg/Kg s.s. < 0,01 ≤ 0,5 ≤ 50 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene EPA 5021A 2014 + EPA 8260C 2006 mg/Kg s.s. < 0,01 ≤ 0,5 ≤ 50 18/10/202 21/10/202 Toluene mg/Kg s.s. < 0,01 ≤ 0,5 ≤ 50 18/10/202 21/10/202 m-xilene + p-xilene mg/Kg s.s. < 0,01 □ 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 □ 21/10/202 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 EPA 5021A 2014 + EPA 8260C 2006 Toluene mg/Kg s.s. < 0,01 □ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202 ■ 18/10/202	Composti organici aromatici:					
EPA 5021A 2014 + EPA 8260C 2006 mg/Kg s.s. < 0,01		mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
EPA 5021A 2014 + EPA 8260C 2006 Toluene EPA 5021A 2014 + EPA 8260C 2006 m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006 m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006 m-xilene EPA 5021A 2014 + EPA 8260C 2006 m-xilene EPA 5021A 2014 + EPA 8260C 2006 mg/Kg s.s. < 0,01 < 18/10/202 < 21/10/202 < 21/10/202 < 3,01 < 21/10/202 < 21/10/202 < 3,01 < 3,01		mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
EPA 5021A 2014 + EPA 8260C 2006 21/10/202 m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006 mg/Kg s.s. < 0,01		mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
ePA 5021A 2014 + EPA 8260C 2006 21/10/202 o-xilene mg/Kg s.s. < 0,01		mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
EPA 5021A 2014 + EPA 8260C 2006 21/10/202 Xileni totali mg/Kg s.s. < 0,01	•	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
EPA 5021A 2014 + EPA 8260C 2006 21/10/202 Sommatoria organici aromatici (da 19 a 23) mg/Kg s.s. < 0,1		mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
		mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
		mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque Ce	ertificato c	li Analisi n	٤21 ،	LA03943
----------	--------------	--------------	-------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,04	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,06	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,07	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,09	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,3	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	25	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03943

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045803 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045803

data di emissione 22/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099504-0009 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03943

Dati Campionamento

Campionato da Cliente - il 14/10/2021

LAB N° 0051 L

22/10/2021

segue rapporto di prova n. RP-ENV-21/000045803

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL	R% Data inizio			
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B							
Amianto	<81	ma/ka	81	22/10/202	I RES		

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB N° 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03943

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S. p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare I intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03944

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T96 - Profondità -1,2/-2,4 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T96

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	97,5			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	68,2			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,8	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,4	≤2	≤15	19/10/2021 21/10/2021
Cobalto	mg/Kg s.s.	7,4	≤20	≤250	19/10/2021

Pagina 1 di 5

21/10/2021

EPA 3051A 2007 + EPA 6020B 2014

Parametro Metodo di Analisi	U.M. mg/Kg s.s.	Risultato 16,7	Limiti 1 - Limiti 2		Data inizio analisi Data fine analisi 19/10/2021 21/10/2021
Cromo totale EPA 3051A 2007 + EPA 6020B 2014			≤150 ≤800		
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,4	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	43,7	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	27,8	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,5	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,2	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	36,1	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	111,4	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque	Certificato	di Analisi n'	21LA03944
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.		Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	2,86	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	2,05	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	>	1,96	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	1,05	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	0,89	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.		3,36	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.		0,05	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	>	0,24	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	>	0,15	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	0,14	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	0,24	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	1,32	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.		4,32	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	•	18,6	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:						
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.		< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.		< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.		< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.		< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.		< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s. ▶	68	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03944

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000045804 del 22/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000045804

data di emissione 22/10/2021

Spett.le Codice intestatario 16647

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

21-099504-0010 Numero di accettazione Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione **CAMPIONE SIGLATO 21LA03944**

Dati Campionamento

Campionato da Cliente - il 14/10/2021

segue rapporto di prova n. RP-ENV-21/000045804

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL R	2% Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B						
Amianto	<81	mg/kg	81	22/10/2021 22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03944

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03945

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T92 - Profondità -0,5/-2,0 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T92

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

RISULTATI ANALITICI				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C	%	96,7		19/10/2021

19/10/2021 CNR IRSA 2 Q.64 Vol.2 1984 Frazione granulometrica < 2 mm 57.2 19/10/2021

Metodo interno	%	57,2			19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,2	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,7	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,9	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

studio

segue Certificato di Analisi n' 21LA03945

Parametro

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,4	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,5	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	57,8	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	37,7	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,0	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,1	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
Vanadio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	37,6	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	152,9	≤150	≤1500	19/10/2021 21/10/2021

Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Sommatoria organici aromatici (da 19 a 23)	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Pagina 2 di 5

21/10/2021

seque	Certificato	di Analisi n'	21LA03945
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,48	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,32	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,49	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,20	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,21	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,61	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,05	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,06	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,09	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s. ▶	0,29	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,71	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	3,5	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	47	≤50	≤750	19/10/2021 20/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03945

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000046118 del 26/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000046118

data di emissione 26/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099505-0001 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03945

Dati Campionamento

Campionato da Cliente - il 14/10/2021

segue rapporto di prova n. RP-ENV-21/000046118

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL R	% Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<80	mg/kg	80	22/10/2021 22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03945

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati otenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03946

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T94 - Profondità -1,65/-2,3 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T94

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

<u>RISULTATI</u>	<u>ANALITICI</u>

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	93,8			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	74,2			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤10	≤30	19/10/2021 21/10/2021
Arsenico <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	15,3	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,6	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

Data inizio analisi

segue Certificato di Analisi n' 21LA03946				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2
Cromo totalo	ma/Ka o o	14.0	<150	~ 900

Metodo di Analisi	U.IVI.	Hisuitato	Limiti 1 - Limiti 2		Data fine analisi	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,3	≤150	≤800	19/10/2021 21/10/2021	
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,6	≤120	≤500	19/10/2021 21/10/2021	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	36,6	≤100	≤1000	19/10/2021 21/10/2021	
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,5	≤120	≤600	19/10/2021 21/10/2021	
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,8	≤3	≤15	19/10/2021 21/10/2021	
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,7	≤20	≤350	19/10/2021 21/10/2021	
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021	
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	34,3	≤90	≤250	19/10/2021 21/10/2021	
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	68,0	≤150	≤1500	19/10/2021 21/10/2021	
Composti organici aromatici:						
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021	
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021	
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021	
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021	
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021	
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021	
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021	
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021	

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue	Certificato	di Analisi n'	21LA03946
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	15	≤50	≤750	19/10/2021 21/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03946

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000046254 del 26/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000046254

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046119

data di emissione 26/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099505-0002 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03946

Dati Campionamento

Campionato da Cliente - il 14/10/2021

25/10/2021

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046119

segue rapporto di prova n. RP-ENV-21/000046254

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL F	R% Data inizio fine analisi	Unità op.		
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B							
Amianto	<80	mg/kg	80	25/10/2021	RES		

Unità Operative

RES : Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB N° 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03946

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Motivazioni del supplemento

Corretto unità di misura, inclusi LOD o LOQ

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046119

segue rapporto di prova n. RP-ENV-21/000046254

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal Cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%. recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03947

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T93 - Profondità -0,5/-1,8 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T93

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	95,8		19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	67,2		19/10/2021 19/10/2021
Composti inorganici:				
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,8	≤10 ≤30	19/10/2021 21/10/2021
Arsenico	mg/Kg s.s.	11,9	≤20 ≤50	19/10/2021

EPA 305TA 2007 + EPA 6020B 2014					21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,5	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	19/10/2021 21/10/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,4	≤20	≤250	19/10/2021 21/10/2021

Pagina 1 di 5

segue	Certificato di Analisi n' 21LA03947	
_		

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,0	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,7	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	29,0	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,2	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,8	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,6	≤20	≤350	19/10/2021 21/10/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤1	≤10	19/10/2021 21/10/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	31,0	≤90	≤250	19/10/2021 21/10/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	69,3	≤150	≤1500	19/10/2021 21/10/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue Certificato	di Analisi n'	21LA03947
-------------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 21/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03947

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000046255 del 26/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000046255

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046120

data di emissione 26/10/2021

Spett.le

16647

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Codice intestatario

Numero di accettazione 21-099505-0003 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03947

Dati Campionamento

Campionato da Cliente - il 14/10/2021

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046120

segue rapporto di prova n. RP-ENV-21/000046255

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL R	% Data inizio fine analisi	Unità op.		
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B							
Amianto	<80	mg/kg	80	25/10/2021 25/10/2021	RES		

Unità Operative

RES : Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB N° 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03947

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Motivazioni del supplemento

Corretto unità di misura, inclusi LOD o LOQ

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.

ANNULLA E SOSTITUISCE RAPPORTO DI PROVA NR. RP-ENV-21/000046120

segue rapporto di prova n. RP-ENV-21/000046255

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal Cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%. recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03948

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T86 - Profondità -0,7/-1,7 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T86

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

RISULTATI ANALITICI				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi

Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	95,2	19/10/2021 19/10/2021
Frazione granulometrica < 2 mm	%	69,0	19/10/2021
Metodo interno			19/10/2021

Wellodo Interno					13/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,9	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,6	≤20	≤50	19/10/2021 21/10/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤2	≤10	19/10/2021 21/10/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤2	≤15	19/10/2021 21/10/2021
Cobalto	mg/Kg s.s.	6,3	≤20	≤250	19/10/2021

Pagina 1 di 5

21/10/2021

EPA 3051A 2007 + EPA 6020B 2014

segue Certificato di An	alisi n° 21 LA03948
-------------------------	----------------------------

	Risultato	Emme 1	- Limiti 2	Data inizio analis Data fine analisi
mg/Kg s.s.	13,5	≤150	≤800	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
mg/Kg s.s.	6,0	≤120	≤500	19/10/2021 21/10/2021
mg/Kg s.s.	25,1	≤100	≤1000	19/10/2021 21/10/2021
mg/Kg s.s.	14,1	≤120	≤600	19/10/2021 21/10/2021
mg/Kg s.s.	1,5	≤3	≤15	19/10/2021 21/10/2021
mg/Kg s.s.	5,0	≤20	≤350	19/10/2021 21/10/2021
mg/Kg s.s.	0,2	≤1	≤10	19/10/2021 21/10/2021
mg/Kg s.s.	36,2	≤90	≤250	19/10/2021 21/10/2021
mg/Kg s.s.	64,7	≤150	≤1500	19/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,1	≤2	18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
mg/Kg s.s.	< 0,1	≤1	≤100	18/10/2021 21/10/2021
	mg/Kg s.s.	mg/Kg s.s. < 0,1	mg/Kg s.s. < 0,1	mg/Kg s.s. < 0,1

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue	Certificato	di Analisi n'	21LA03948
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	19/10/2021 21/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03948

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000046121 del 26/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000046121

data di emissione 26/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099505-0004 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03948

Dati Campionamento

Campionato da Cliente - il 14/10/2021

22/10/2021

segue rapporto di prova n. RP-ENV-21/000046121

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B						
Amianto	<80	mg/kg	80	22/10/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03948

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare I intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA03949

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 18/10/2021

Data di emissione del CdA: 28/10/2021

Matrice: Terreni

Descrizione: Terreno - Campione T91 - Profondità -1,6/-2,4 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 14/10/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T91

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	94,0			19/10/2021 19/10/2021
Frazione granulometrica < 2 mm Metodo interno	%	62,2			19/10/2021 19/10/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,2	≤10	≤30	19/10/2021 21/10/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	13,2	≤20	≤50	19/10/2021 21/10/2021
Berillio	mg/Kg s.s.	1,1	≤2	≤10	19/10/2021

mg/Kg s.s.

mg/Kg s.s.

Pagina 1 di 5

21/10/2021

19/10/2021

21/10/2021

19/10/2021 21/10/2021

Cobalto

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

≤15

≤250

≤20

0,3

7,6

segue Certificato di Analisi n' 21LA03949

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	16,2	≤150	≤800	19/10/2021 21/10/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	19/10/2021 21/10/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	19/10/2021 21/10/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,4	≤120	≤500	19/10/2021 21/10/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,0	≤100	≤1000	19/10/2021 21/10/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,4	≤120	≤600	19/10/2021 21/10/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,0	≤3	≤15	19/10/2021 21/10/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,2	≤20	≤350	19/10/2021 21/10/2021
Tallio	mg/Kg s.s.	0,2	≤1	≤10	19/10/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

37,8

112,5

< 0,01

< 0,1

Composti organici aromatici:

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

EPA 5021A 2014 + EPA 8260C 2006

Vanadio

Zinco

Benzene

Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			18/10/2021 21/10/2021
Xileni totali	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

21/10/2021

18/10/2021 21/10/2021

21/10/2021

19/10/2021 21/10/2021

19/10/2021

21/10/2021

18/10/2021

21/10/2021

≤250

≤1500

≤2

≤100

≤90

≤150

≤0,1

seque	Certificato	di Analisi n'	21LA03949
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	19/10/2021 20/10/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	19/10/2021 20/10/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	19/10/2021 20/10/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	19/10/2021 20/10/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	19/10/2021 20/10/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	18/10/2021 21/10/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	18/10/2021 21/10/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	18/10/2021 21/10/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	18/10/2021 21/10/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	18/10/2021 21/10/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	18/10/2021 21/10/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	18/10/2021 21/10/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	18/10/2021 21/10/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	18/10/2021 21/10/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	18/10/2021 21/10/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	18/10/2021 21/10/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	18/10/2021 21/10/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	19/10/2021 25/10/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	18/10/2021 21/10/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	11	≤50	≤750	19/10/2021 21/10/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA03949

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000046122 del 26/10/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000046122

data di emissione 26/10/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-099505-0005 Consegnato da GLS il 20/10/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA03949

Dati Campionamento

Campionato da Cliente - il 14/10/2021

22/10/2021

segue rapporto di prova n. RP-ENV-21/000046122

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL	R% Data inizio fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B					
Amianto	<80	mg/kg	80	22/10/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (RL) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione: CAMPIONE SIGLATO 21LA03949

Campionato da: Cliente - il 14/10/2021

Proveniente da: TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "." derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da "#" non sono stati utilizzati nei calcoli. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità /non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (esclusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 3 Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04242

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T69 - Profondità -2,6 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T69

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,6			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	37,7			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	4,1	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,0	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

studio

Limiti 1 - Limiti 2

Data inizio analisi

segue Certificato di Analisi n' 21LA04242

Parametro

Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	19,5	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	20,7	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	49,4	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,7	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	47,8	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	25,7	≤90	≤250	08/11/2021 09/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	43,6	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021

U.M.

Risultato

Stirene <i>EPA 5021A 2014 + EPA 8260C 2006</i>	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021

mg/Kg s.s.

< 0,01

≤0,5

≤50

Idrocarburi policiclici aromatici:

domicilio fiscale

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

Etilbenzene

Pagina 2 di 5

08/11/2021

08/11/2021 08/11/2021

segue Certificato	di Analisi n' 21	LA04242
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04242

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051127 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051127

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0001

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04242

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051127

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B					
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04242

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcola od un livello di probabilità di circa il 95% o come intervallo di confidenza calcola od un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo ".-" derivano da calcolo. La riga contrassegnata da asserisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04243

DATI CAMPIONE

Numero d'ordine: **21-001367**Data di ricevimento: **05/11/2021**

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T71 - Profondità -2,7 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T71

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,6			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	83,9			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤10	≤30	08/11/2021 09/11/2021
Arsenico <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	7,2	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,8	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

studio

segue Certificato di Analisi n' 21LA04243	
Parametro	

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	19,2	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	20,0	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	18,3	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	13,3	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	2,7	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,6	≤90	≤250	08/11/2021 09/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	65,3	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021
11					

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque	Certificato	di Analisi n'	21LA04243
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene <i>EPA 3550C 2007 + EPA 8270D 2014</i>	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04243

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051128 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051128

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0002

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04243

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051128

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL F	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04243

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04244

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T72 - Profondità -2,1/-2,6 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T72

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	98,8			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	55,7			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,4	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,3	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,4	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,2	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,0	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	22,9	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	40,1	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	25,9	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,2	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	27,6	≤90	≤250	08/11/2021 09/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	103,8	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue Certificato	di Analisi n' 21	LA04244
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04244

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051129 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051129

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0003

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04244

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051129

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B						
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04244

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04246

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T73 - Profondità -2,7 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T73

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,7			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	56,2			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	3,9	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,5	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

segue Certificato di Analisi n' 21LA04246

Parametro

Benzene

Etilbenzene

Stirene

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,0	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,3	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	11,9	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,7	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	4,5	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,2	≤90	≤250	08/11/2021 09/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	51,5	≤150	≤1500	08/11/2021 09/11/2021

Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

< 0,01

< 0,01

< 0,01

≤0,1

≤0,5

≤0,5

≤2

≤50

≤50

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

Pagina 2 di 5

08/11/2021

08/11/2021

08/11/2021 08/11/2021

08/11/2021 08/11/2021

segue Certificato	di Analisi n'	21LA04246
-------------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene <i>EPA 3550C 2007 + EPA 8270D 2014</i>	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s. ▶	99	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04246

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051130 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051130

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0004

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04246

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051130

RISULTATI ANALITICI							
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.		
Sul campione tal quale							
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B							
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES		

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04246

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04247

DATI CAMPIONE

Numero d'ordine: **21-001367**Data di ricevimento: **05/11/2021**

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T74 - Profondità -1,8 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T74

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	98,8			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	67,0			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,6	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,6	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,6	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,3	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

studio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	32,5	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,8	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	52,6	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	23,3	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,7	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	37,5	≤90	≤250	08/11/2021 09/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	122,9	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

08/11/2021

08/11/2021

≤100

< 0,1

mg/Kg s.s.

segue	Certificato	di Analisi n'	21LA04247
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene <i>EPA 3550C 2007 + EPA 8270D 2014</i>	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04247

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051131 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051131

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0005

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04247

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051131

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL F	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04247

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico
Ordine dei chimici e dei fisici - Provincia di Treviso
Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Ecoopera Società Cooperativa Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04248

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T75 - Profondità -1,2 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T75

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,2			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	66,8			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	0,4	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	5,7	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,9	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,1	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

segue Certificato di Analisi n' 21LA04248

U.M.	Risultato		- Limiti 2	Data inizio analis Data fine analisi
mg/Kg s.s.	20,3	≤150	≤800	08/11/2021 09/11/2021
mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
mg/Kg s.s.	16,5	≤120	≤500	08/11/2021 09/11/2021
mg/Kg s.s.	27,5	≤100	≤1000	08/11/2021 09/11/2021
mg/Kg s.s.	15,7	≤120	≤600	08/11/2021 09/11/2021
mg/Kg s.s.	1,7	≤3	≤15	08/11/2021 09/11/2021
mg/Kg s.s.	9,8	≤20	≤350	08/11/2021 09/11/2021
mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
mg/Kg s.s.	28,4	≤90	≤250	08/11/2021 09/11/2021
mg/Kg s.s.	78,6	≤150	≤1500	08/11/2021 09/11/2021
mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021
	mg/Kg s.s.	mg/Kg s.s. < 0,1	mg/Kg s.s. < 0,1	mg/Kg s.s. < 0,1

Idrocarburi policiclici aromatici:

Pagina 2 di 5

segue Certificato	di Analisi n' 21	LA04248
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04248

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051132 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051132

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0006

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04248

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051132

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL F	% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B					
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04248

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04249

DATI CAMPIONE

Numero d'ordine: **21-001367**Data di ricevimento: **05/11/2021**

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T76 - Profondità -1,1/-1,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T76

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	96,8			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	91,2			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	1,0	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	11,8	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,9	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,8	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,6	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

segue Certificato di Analisi n' 21LA04249

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	35,7	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	31,6	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	102,3	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	51,2	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,9	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,1	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	46,6	≤90	≤250	08/11/2021 09/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	228,1	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

Toluene

o-xilene

Xileni totali

m-xilene + p-xilene

≤0,5

≤0,5

≤1

< 0,01

< 0,01

< 0,01

< 0,01

< 0,1

≤50

≤50

≤100

segue	Certificato	di Analisi n'	21LA04249
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene <i>EPA 3550C 2007 + EPA 8270D 2014</i>	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	13	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04249

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051133 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051133

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0007

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04249

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051133

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R%	Data inizio/ fine analisi	Unità op.
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81		16/11/2021 16/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04249

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04250

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T76 - Profondità -1,5 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento nº B0165 - Lotto H81

Punto di prelievo: trincea T76

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,5			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	53,5			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤10	≤30	08/11/2021 09/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	4,9	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,3	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,4	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

studio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	25,9	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	25,9	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,9	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	16,8	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	08/11/2021 09/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	16,1	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	29,3	≤90	≤250	08/11/2021 09/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	68,9	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

< 0,01

< 0,01

< 0,01

< 0,1

≤0,5

≤1

≤50

≤100

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

08/11/2021

m-xilene + p-xilene

o-xilene

Xileni totali

segue Certificato	di Analisi n' 21	LA04250
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04250

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051134 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051134

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL

VIA DEL GARDA, 48/E 38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0008

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04250

Dati Campionamento

Campionato da Cliente - il 04/11/2021

seque rapporto di prova n. RP-ENV-21/000051134

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B					
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

CAMPIONE SIGLATO 21LA04250 Descrizione campione

Campionato da Cliente - il 04/11/2021

TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT Proveniente da

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k=2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2 FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04251

DATI CAMPIONE

Numero d'ordine: **21-001367**Data di ricevimento: **05/11/2021**

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T85 - Profondità -1,2 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T85

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,2			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	66,1			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,3	≤10	≤30	08/11/2021 09/11/2021
Arsenico <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	9,4	≤20	≤50	08/11/2021 09/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤2	≤10	08/11/2021 09/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	08/11/2021 09/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,2	≤20	≤250	08/11/2021 09/11/2021

Pagina 1 di 5

segue Certificato di Analisi n' 21LA04251

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,2	≤150	≤800	08/11/2021 09/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	< 0,1	≤1	≤5	08/11/2021 09/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,3	≤120	≤500	08/11/2021 09/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	28,5	≤100	≤1000	08/11/2021 09/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	16,0	≤120	≤600	08/11/2021 09/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,9	≤3	≤15	08/11/2021 09/11/2021
Stagno <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	6,3	≤20	≤350	08/11/2021 09/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	08/11/2021 09/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	34,0	≤90	≤250	08/11/2021 09/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	55,8	≤150	≤1500	08/11/2021 09/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021
11					

Idrocarburi policiclici aromatici:

Pagina 2 di 5

seque Certifica	o di Analisi n' 21LA04251
-----------------	----------------------------------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04251

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051135 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051135

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0009

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04251

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051135

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B						
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04251

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04252

DATI CAMPIONE

Numero d'ordine: **21-001367**Data di ricevimento: **05/11/2021**

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T88 - Profondità -1,0 m (fondo scavo)

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T88

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,0			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	69,3			08/11/2021 08/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,0	≤10	≤30	10/11/2021 12/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,4	≤20	≤50	10/11/2021 12/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,2	≤2	≤10	10/11/2021 12/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤2	≤15	10/11/2021 12/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,4	≤20	≤250	10/11/2021 12/11/2021

Pagina 1 di 5

studio

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,5	≤150	≤800	10/11/2021 12/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	08/11/2021 10/11/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	< 0,1	≤1	≤5	10/11/2021 12/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	7,4	≤120	≤500	10/11/2021 12/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	36,3	≤100	≤1000	10/11/2021 12/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,1	≤120	≤600	10/11/2021 12/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,0	≤3	≤15	10/11/2021 12/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,6	≤20	≤350	10/11/2021 12/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	10/11/2021 12/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,9	≤90	≤250	10/11/2021 12/11/2021
Z inco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	74,6	≤150	≤1500	10/11/2021 12/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021

mg/Kg s.s.

mg/Kg s.s.

< 0,01

< 0,1

≤0,5

≤1

≤50

≤100

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

08/11/2021 08/11/2021

08/11/2021

08/11/2021

Xileni totali

segue	Certificato	di Analisi n'	21LA04252
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,04	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,04	≤0,1	≤10	08/11/2021 09/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,08	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 09/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Crisene <i>EPA 3550C 2007 + EPA 8270D 2014</i>	mg/Kg s.s.	0,10	≤5	≤50	08/11/2021 09/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 09/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 09/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,14	≤5	≤50	08/11/2021 09/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,4	≤10	≤100	08/11/2021 09/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	08/11/2021 08/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	08/11/2021 08/11/2021

Pagina 3 di 5

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	08/11/2021 08/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	08/11/2021 08/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	08/11/2021 08/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	08/11/2021 08/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	08/11/2021 08/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	08/11/2021 08/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	08/11/2021 08/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	08/11/2021 08/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	08/11/2021 08/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	08/11/2021 11/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	08/11/2021 08/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	16	≤50	≤750	08/11/2021 10/11/2021

Pagina 4 di 5

segue Certificato di Analisi n' 21LA04252

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051136 del 16/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051136

data di emissione 16/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097835-0010

Consegnato da Tecnico Mérieux Nutrisciences il 10/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04252

Dati Campionamento

Campionato da Cliente - il 04/11/2021

segue rapporto di prova n. RP-ENV-21/000051136

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B						
Amianto	<81	mg/kg	81	16/11/2021 16/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04252

Campionato da Cliente - il 04/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

Limiti 1 - Limiti 2

≤15

≤250

≤20

CERTIFICATO DI ANALISI 21LA04355

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T56 - Profondità -0,2/-0,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T56

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Parametro

Note al campionamento: Verbale di campionamento 21-001367

Metodo di Analisi	U.M.	Hisuitato	Limiti i	- Limiti 2	Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,7			12/11/2021 12/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	66,3			12/11/2021 12/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,7	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,1	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	15/11/2021 17/11/2021

LLM

mg/Kg s.s.

mg/Kg s.s.

Rigultato

0,2

5,3

Pagina 1 di 5

15/11/2021

17/11/2021

15/11/2021 17/11/2021

Data inizio analisi

Cadmio

Cobalto

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

Data inizio analisi Data fine analisi

segue Certificato di Analisi n' 21LA04355				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2
Cromo totale	mg/Kg s.s.	14,0	≤150	≤800

					Data lille alialisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,0	≤150	≤800	15/11/2021 17/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
Mercurio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,5	≤120	≤500	15/11/2021 17/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	42,8	≤100	≤1000	15/11/2021 17/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,5	≤120	≤600	15/11/2021 17/11/2021
Selenio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	2,0	≤3	≤15	15/11/2021 17/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,8	≤20	≤350	15/11/2021 17/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	30,2	≤90	≤250	15/11/2021 17/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	44,3	≤150	≤1500	15/11/2021 17/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	12/11/2021 12/11/2021

Idrocarburi policiclici aromatici:

segue Certificato	di Analisi n' 21	LA04355
-------------------	------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04355

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051506 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051506

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097976-0001 Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04355

Dati Campionamento

Campionato da Cliente - il 09/11/2021

segue rapporto di prova n. RP-ENV-21/000051506

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R%	Data inizio/ fine analisi	Unità op.
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81		17/11/2021 17/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04355

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04356

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T57 - Profondità -0,3/-0,6 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T57

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

RISULTATI ANALITICI

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,7			12/11/2021 12/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	72,1			12/11/2021 12/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,4	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	13,5	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	15/11/2021 17/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤2	≤15	15/11/2021 17/11/2021
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,1	≤20	≤250	15/11/2021 17/11/2021

segue Certificato di Analisi n' 21LA04356

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,2	≤150	≤800	15/11/2021 17/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,8	≤120	≤500	15/11/2021 17/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	40,3	≤100	≤1000	15/11/2021 17/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	19,5	≤120	≤600	15/11/2021 17/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,1	≤3	≤15	15/11/2021 17/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	13,7	≤20	≤350	15/11/2021 17/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	36,1	≤90	≤250	15/11/2021 17/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	55,9	≤150	≤1500	15/11/2021 17/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

mg/Kg s.s.

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Toluene

o-xilene

Xileni totali

m-xilene + p-xilene

Pagina 2 di 5

12/11/2021

12/11/2021

12/11/2021

12/11/2021

12/11/2021

12/11/2021

12/11/2021

12/11/2021

12/11/2021 12/11/2021

≤0,5

≤0,5

≤1

< 0,01

< 0,01

< 0,01

< 0,01

< 0,1

≤50

≤50

≤100

segue	Certificato	di Analisi n'	21LA04356
-------	-------------	---------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	17	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04356

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051507 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051507

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097976-0002 Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04356

Dati Campionamento

Campionato da Cliente - il 09/11/2021

segue rapporto di prova n. RP-ENV-21/000051507

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	17/11/2021 17/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04356

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04357

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T58 - Profondità -0,3/-0,6 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T58

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,9			12/11/2021 12/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	69,7			12/11/2021 12/11/2021
Composti inorganici:					
Antimonio <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	1,0	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,7	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	15/11/2021 17/11/2021
Cadmio	mg/Kg s.s.	< 0,1	≤2	≤15	15/11/2021

mg/Kg s.s.

5,2

≤20

≤250

Pagina 1 di 5

17/11/2021

15/11/2021 17/11/2021

Cobalto

EPA 3051A 2007 + EPA 6020B 2014

EPA 3051A 2007 + EPA 6020B 2014

segue Certificato di Analisi n' 21LA0435	segue	Certificato	di Analisi	n ^c 21L	A04357
--	-------	-------------	------------	--------------------	--------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	17,3	≤150	≤800	15/11/2021 17/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,2	≤120	≤500	15/11/2021 17/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	29,6	≤100	≤1000	15/11/2021 17/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	13,4	≤120	≤600	15/11/2021 17/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	2,0	≤3	≤15	15/11/2021 17/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,4	≤20	≤350	15/11/2021 17/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	33,0	≤90	≤250	15/11/2021 17/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	39,8	≤150	≤1500	15/11/2021 17/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	12/11/2021 12/11/2021

Idrocarburi policiclici aromatici:

segue Certificat	to di Analisi n' 21	LA04357
------------------	----------------------------	---------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04357

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051508 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051508

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097976-0003 Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04357

Dati Campionamento

Campionato da Cliente - il 09/11/2021

seque rapporto di prova n. RP-ENV-21/000051508

RISULTATI ANALITICI						
	Valore/ Incertezza	U.M.	RL F	R% Data inizio/ fine analisi	Unità op.	
Sul campione tal quale						
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B						
Amianto	<81	mg/kg	81	17/11/2021 17/11/2021	RES	

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04357

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04358

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T82 - Profondità -0,5/-1,0 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T82

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

RISULTATI ANALITICI

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,5			12/11/2021 12/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	67,3			12/11/2021 12/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s. ▶	20,2	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,8	≤2	≤10	15/11/2021 17/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,1	≤2	≤15	15/11/2021 17/11/2021
Cobalto	mg/Kg s.s.	6,2	≤20	≤250	15/11/2021

Pagina 1 di 5

17/11/2021

EPA 3051A 2007 + EPA 6020B 2014

segue Certificato di Analisi n'	21LA04358
---------------------------------	-----------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,1	≤150	≤800	15/11/2021 17/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,4	≤120	≤500	15/11/2021 17/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	25,0	≤100	≤1000	15/11/2021 17/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	14,3	≤120	≤600	15/11/2021 17/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 1,5	≤3	≤15	15/11/2021 17/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	8,1	≤20	≤350	15/11/2021 17/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	35,7	≤90	≤250	15/11/2021 17/11/2021
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	51,7	≤150	≤1500	15/11/2021 17/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	12/11/2021 12/11/2021

Idrocarburi policiclici aromatici:

seque Certificato di A	Analisi n' 21LA04358	
------------------------	-----------------------------	--

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04358

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051509 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051509

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097976-0004

Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04358

Dati Campionamento

Campionato da Cliente - il 09/11/2021

segue rapporto di prova n. RP-ENV-21/000051509

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B					
Amianto	<81	mg/kg	81	17/11/2021 17/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04358

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita.

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Spett. **Ecoopera Società Cooperativa**Loc. Sponda Trentina, 18

38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04359

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T83 - Profondità -0,4/-1,3 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T83

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Note al campionamento: Verbale di campionamento 21-001367

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,5			12/11/2021 12/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	71,6			12/11/2021 12/11/2021
Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,5	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	10,3	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,9	≤2	≤10	15/11/2021 17/11/2021
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤2	≤15	15/11/2021 17/11/2021
Cobalto	mg/Kg s.s.	6,2	≤20	≤250	15/11/2021

Pagina 1 di 5

17/11/2021

EPA 3051A 2007 + EPA 6020B 2014

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	15,3	≤150	≤800	15/11/2021 17/11/2021
Cromo esavalente (VI) CNR IRSA 16 Q.64 Vol.3 1986	mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	6,7	≤120	≤500	15/11/2021 17/11/2021
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	24,7	≤100	≤1000	15/11/2021 17/11/2021
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,6	≤120	≤600	15/11/2021 17/11/2021
Selenio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,7	≤3	≤15	15/11/2021 17/11/2021
Stagno EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	9,5	≤20	≤350	15/11/2021 17/11/2021
Tallio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	34,1	≤90	≤250	15/11/2021 17/11/2021
Zinco <i>EPA 3051A 2007 + EPA 6020B 2014</i>	mg/Kg s.s.	32,8	≤150	≤1500	15/11/2021 17/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021

< 0,1

mg/Kg s.s.

Idrocarburi policiclici aromatici:

EPA 5021A 2014 + EPA 8260C 2006

Sommatoria organici aromatici (da 19 a 23)

Pagina 2 di 5

12/11/2021 12/11/2021

≤100

seque Certificato	di Analisi n' 21LA04359	
-------------------	--------------------------------	--

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
ldrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04359

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051510 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051510

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

IT

Dati Campione

Numero di accettazione 21-097976-0005

Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04359

Dati Campionamento

Campionato da Cliente - il 09/11/2021

segue rapporto di prova n. RP-ENV-21/000051510

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL F	R% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1 B					
Amianto	<81	mg/kg	81	17/11/2021 17/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04359

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04360

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 10/11/2021

Data di emissione del CdA: 25/11/2021

Matrice: Terreni

Descrizione: Terreno - Campione T84 - Profondità -0,8/-1,4 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 09/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T84

Modalità: 18 incrementi eseguiti sul materiale prelevato dalla trincea realizzata tra le profondità indicate, setacciatura a 2

cm, miscelazione e quartatura a campione finale. Campione primario di circa 15 Kg

Condizioni ambientali: sereno

Residuo secco 105°C

Note al campionamento: Verbale di campionamento 21-001367

RISULTATI ANALITICI				
Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1 - Limiti 2	Data inizio analisi Data fine analisi

 CNR IRSA 2 Q.64 Vol.2 1984
 12/11/2021

 Frazione granulometrica < 2 mm</td>
 %
 71,4
 12/11/2021

 Metodo interno
 12/11/2021

%

99,2

Composti inorganici:

Composti inorganici:					
Antimonio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,4	≤10	≤30	15/11/2021 17/11/2021
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	12,0	≤20	≤50	15/11/2021 17/11/2021
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/Kg s.s.	1,0	≤2	≤10	15/11/2021 17/11/2021

 Berillio
 mg/Kg s.s.
 1,0
 ≤2
 ≤10
 15/11/2021

 EPA 3051A 2007 + EPA 6020B 2014
 mg/Kg s.s.
 < 0,1</td>
 ≤2
 ≤15
 15/11/2021

 Cobalto
 mg/Kg s.s.
 4,8
 ≤20
 ≤250
 15/11/2021

 EPA 3051A 2007 + EPA 6020B 2014
 mg/Kg s.s.
 4,8
 ≤20
 ≤250
 15/11/2021

Pagina 1 di 5

studio

12/11/2021

segue Certificato di Analisi n' 21LA04360
Dorometra

U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analisi Data fine analisi
mg/Kg s.s.	12,6	≤150	≤800	15/11/2021 17/11/2021
mg/Kg s.s.	< 0,1	≤2	≤15	12/11/2021 15/11/2021
mg/Kg s.s.	< 0,1	≤1	≤5	15/11/2021 17/11/2021
mg/Kg s.s.	5,9	≤120	≤500	15/11/2021 17/11/2021
mg/Kg s.s.	35,5	≤100	≤1000	15/11/2021 17/11/2021
mg/Kg s.s.	9,6	≤120	≤600	15/11/2021 17/11/2021
mg/Kg s.s.	1,7	≤3	≤15	15/11/2021 17/11/2021
mg/Kg s.s. ▶	20,2	≤20	≤350	15/11/2021 17/11/2021
mg/Kg s.s.	0,2	≤1	≤10	15/11/2021 17/11/2021
mg/Kg s.s.	28,0	≤90	≤250	15/11/2021 17/11/2021
mg/Kg s.s.	33,0	≤150	≤1500	15/11/2021 17/11/2021
mg/Kg s.s.	< 0,01	≤0,1	≤2	12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01			12/11/2021 12/11/2021
mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
mg/Kg s.s.	< 0,1	≤1	≤100	12/11/2021 12/11/2021
	mg/Kg s.s. mg/Kg s.s.	mg/Kg s.s. 12,6 mg/Kg s.s. < 0,1	mg/Kg s.s. 12,6 ≤150 mg/Kg s.s. < 0,1	mg/Kg s.s. 12,6 ≤150 ≤800 mg/Kg s.s. < 0,1

Idrocarburi policiclici aromatici:

segue Certificato	o di Analisi n' 21LA04360	
-------------------	----------------------------------	--

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	12/11/2021 15/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,l)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	12/11/2021 15/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	12/11/2021 15/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤5	≤50	12/11/2021 15/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,1	≤10	≤100	12/11/2021 15/11/2021
Alifatici clorurati cancerogeni:					
Clorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Diclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Triclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤5	12/11/2021 12/11/2021
Cloruro di vinile EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
1,2-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,2	≤5	12/11/2021 12/11/2021

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analis
1,1-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
Tricloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤1	≤10	12/11/2021 12/11/2021
Tetracloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤20	12/11/2021 12/11/2021
Alifatici clorurati non cancerogeni:					
1,1-dicloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤30	12/11/2021 12/11/2021
1,2-dicloroetilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤15	12/11/2021 12/11/2021
1,1,1-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	12/11/2021 12/11/2021
1,2-dicloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,3	≤5	12/11/2021 12/11/2021
1,1,2-tricloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤15	12/11/2021 12/11/2021
1,2,3-tricloropropano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤1	12/11/2021 12/11/2021
1,1,2,2-tetracloroetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Alifatici alogenati cancerogeni:					
Tribromometano (bromoformio) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
1,2-dibromoetano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,005	≤0,01	≤0,1	12/11/2021 12/11/2021
Dibromoclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Bromodiclorometano EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤10	12/11/2021 12/11/2021
Policlorobifenili:					
Policlorobifenili (PCB) EPA 3550C 2007 + EPA 8082A 2007	mg/Kg s.s.	< 0,005	≤0,06	≤5	12/11/2021 16/11/2021
Idrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s.	< 3,0	≤10	≤250	12/11/2021 12/11/2021
Idrocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s.	< 10	≤50	≤750	12/11/2021 15/11/2021

segue Certificato di Analisi n' 21LA04360

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

La determinazione dell'Amianto è stata eseguita da laboratorio Chelab S.r.l. su aliquota di campione inviato essiccato a 105°C e setacciato a 2 mm, vedi allegato Rapporto di Prova n. RP-ENV-21/000051511 del 18/11/2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

RAPPORTO DI PROVA RP-ENV-21/000051511

data di emissione 18/11/2021

Spett.le Codice intestatario 16647 TERALA

TERALAB SRL VIA DEL GARDA, 48/E

38068 ROVERETO (TN)

ΙT

Dati Campione

Numero di accettazione 21-097976-0006

Consegnato da GLS il 15/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Matrice Rifiuto massivo

Descrizione campione CAMPIONE SIGLATO 21LA04360

Dati Campionamento

Campionato da Cliente - il 09/11/2021

segue rapporto di prova n. RP-ENV-21/000051511

RISULTATI ANALITICI					
	Valore/ Incertezza	U.M.	RL	R% Data inizio/ fine analisi	Unità op.
Sul campione tal quale					
DETERMINAZIONE DELL'AMIANTO (SEM) DM 06/09/1994 GU n° 288 10/12/1994 AII 1 B					
Amianto	<81	mg/kg	81	17/11/2021 17/11/2021	RES

Unità Operative

RES: Via Castellana, 118/A 31023 Resana (TV) - Accreditamento ACCREDIA LAB Nº 0051 L

Informazioni sui metodi di prova e/o requisiti/specifiche

Metodo: DM 06/09/1994 GU n° 288 10/12/1994 All 1 B = Per la determinazione dell'amianto qualitativo il laboratorio ha validato il proprio limite di rilevabilità (R L) e garantisce il rilevamento di fibre di amianto se il contenuto nel campione è >= allo 0,01% in massa, con un intervallo di confidenza del 95%.

Informazioni fornite dal cliente

Descrizione campione CAMPIONE SIGLATO 21LA04360

Campionato da Cliente - il 09/11/2021

Proveniente da TERALAB SRL VIA DEL GARDA, 48/E 38068 ROVERETO TN IT

Responsabile prove chimiche

Barbara Scantamburlo

Chimico Ordine dei chimici e dei fisici - Provincia di Treviso Iscrizione n. A351

Num. certificato 21005078 emesso dall'ente certificatore ArubaPEC S.p.A. NG CA 3, ArubaPEC S.p.A., IT

RL=LOQ: limite di quantificazione, definito come la concentrazione del punto più basso della curva di taratura, corretta per i fattori di scala (pesate, diluizioni) relativi alla Norma o Procedura richiamata; "<x" o ">x" indicano rispettivamente un valore inferiore o superiore al campo di misura della prova. Se non diversamente specificato, le sommatorie sono calcolate mediante il criterio Lower Bound (L.B.). In caso di alterazione del campione il laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi. Nel caso il campionamento non sia stato effettuato dal personale del laboratorio i risultati ottenuti si considerano riferiti al campione così come ricevuto e il laboratorio declina la propria responsabilità sui risultati calcolati considerando i dati di campionamento forniti dal Cliente. Il nome e i recapiti del cliente sono sempre forniti dal cliente. Se non diversamente specificato, l'incertezza è estesa ed è stata calcolata con un fattore di copertura k =2 corrispondente ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95% o come intervallo di confidenza calcolato ad un livello di probabilità di circa il 95%. I parametri preceduti dal simbolo "-" derivano da calcolo. La riga contrassegnata da asterisco (*) indica che la prova non è accreditata da Accredia presso l'unità operativa o laboratorio dove è stata eseguita. R%: recupero, i recupero contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente

R%: recupero, i recuperi contrassegnati da cancelletto (#) non sono stati utilizzati nei calcoli. Il recupero è relativo alle fasi analitiche eseguite in laboratorio. Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i valori esposti in grassetto indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'intervallo di confidenza della misura o l'incertezza associata al risultato. Se non diversamente specificato le prove microbiologiche quantitative (es clusi MPN) su matrici ambientali liquide e solide sono eseguite su singola replica e due volumi consecutivi e l'incertezza di misura viene espressa come limite fiduciario superiore e inferiore ad un limite di confidenza del 95% conformemente alla ISO 8199:2018.

Mod. 2037H/SQ rev. 4

Pagina 2 di 2
FINE RAPPORTO DI PROVA

Spett. **Ecoopera Società Cooperativa** Loc. Sponda Trentina, 18 38121 TRENTO (TN)

CERTIFICATO DI ANALISI 21LA04245

DATI CAMPIONE

Numero d'ordine: 21-001367 Data di ricevimento: 05/11/2021

Data di emissione del CdA: 17/11/2021

Matrice: Terreni

Descrizione: Terreno puntuale - Campione T73 - Profondità -2,0/-2,5 m

Note al ricevimento: caratterizzazione ai sensi della D.G.P. 102 del 09 Febbraio 2021

DATI CAMPIONAMENTO

Campionamento a cura di: Dott. Thomas Gerola

Data: 04/11/2021

Prelievo eseguito presso: cantiere BBT Stazione Ferroviaria di Fortezza - Affidamento n° B0165 - Lotto H81

Punto di prelievo: trincea T73

Modalità: Campionamento puntuale Condizioni ambientali: coperto

Note al campionamento: Verbale di campionamento 21-001367

RISULTATI ANALITICI

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio analis Data fine analisi
Residuo secco 105°C CNR IRSA 2 Q.64 Vol.2 1984	%	99,0			08/11/2021 08/11/2021
Frazione granulometrica < 2 mm Metodo interno	%	99,0			08/11/2021 08/11/2021
Composti organici aromatici:					
Benzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,1	≤2	08/11/2021 08/11/2021
Etilbenzene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Stirene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Toluene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
m-xilene + p-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021

segue Certificato di Analisi n' 21L	A04245
-------------------------------------	--------

Parametro Metodo di Analisi	U.M.	Risultato	Limiti 1	- Limiti 2	Data inizio anali Data fine analis
o-xilene EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01			08/11/2021 08/11/2021
Xileni totali EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,01	≤0,5	≤50	08/11/2021 08/11/2021
Sommatoria organici aromatici (da 19 a 23) EPA 5021A 2014 + EPA 8260C 2006	mg/Kg s.s.	< 0,1	≤1	≤100	08/11/2021 08/11/2021
Idrocarburi policiclici aromatici:					
Benzo(a)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,07	≤0,5	≤10	08/11/2021 12/11/2021
Benzo(a)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Benzo(b)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 12/11/2021
Benzo(k)fluorantene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,5	≤10	08/11/2021 12/11/2021
Benzo(g,h,i)perilene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Crisene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,35	≤5	≤50	08/11/2021 12/11/2021
Dibenzo(a,e)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Dibenzo(a,I)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Dibenzo(a,i)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Dibenzo(a,h)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Dibenzo(a,h)antracene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤10	08/11/2021 12/11/2021
Indeno(1,2,3-cd)pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	< 0,03	≤0,1	≤5	08/11/2021 12/11/2021
Pirene EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,45	≤5	≤50	08/11/2021 12/11/2021
Sommatoria policiclici aromatici (da 25 a 37) EPA 3550C 2007 + EPA 8270D 2014	mg/Kg s.s.	0,9	≤10	≤100	08/11/2021 12/11/2021
ldrocarburi:					
Idrocarburi leggeri (C5-C12) EPA 5021A 2014 + EPA 8015D 2003	mg/Kg s.s. ▶	542,0	≤10	≤250	08/11/2021 11/11/2021
drocarburi pesanti (C13-C40) ISO 16703:2011	mg/Kg s.s. ▶	19047	≤50	≤750	08/11/2021 11/11/2021

segue Certificato di Analisi n' 21LA04245

▶ i parametri contraddistinti dal simbolo a lato sono NON CONFORMI.

Limiti: 1) Colonna A, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102 2) Colonna B, Tabella 1, Allegato 1 alla Deliberazione della Giunta Provinciale del 9 febbraio 2021, n°102

Note al Certificato di Analisi: analisi eseguite sull'aliquota di granulometria inferiore a 2 mm e valori riferiti alla totalità dei materiali secchi, come previsto dalla D.G.P. 102 del 09 Febbraio 2021

I risultati analitici si riferiscono esclusivamente al campione sottoposto ad analisi.

La riproduzione parziale del presente Certificato di Analisi non è consentita senza autorizzazione scritta del sottoscritto.

Dr. Thomas Gerola

